
Certifying an Automated Code Generator Using
Formal Tools:

Preliminary experiments in the GeneAuto project
N. Izerrouken 1 X. Thirioux 1 M. Pantel 1 M. Strecker 1

IRIT, University of Toulouse, France

ABSTRACT

This paper reports on the study and early experiments
of the available technologies for the formal validation and
verification of Automated Code Generator which took place
in the GeneAuto project. GeneAuto aims at the development
of an ACG for a safe subset of the Matlab/Simulink/Stateflow
modelling language which will be used for the development
of certified safety critical embedded real time systems in
the automobile, aeronautic and space domains and therefore
subject to the certification authorities and standards of these
domains. The chosen technology is illustrated through the
development of a scheduler process for a safe subset of block
diagrams. Our purpose is to develop and formally verify some
parts of the GeneAuto ACG using the Coq proof assistant.
Such a certified code generator guarantees that the correctness
properties already proved on the model source code will still
hold for the executable code. We focus in this paper on the
scheduler part.

KEY WORDS

Automatic Code Generation, Certified systems, Validation,
Formal verification, Scheduler, Proof assistant, Coq.

I. INTRODUCTION

Nowadays, safety critical aspects are more and more present
in embedded real time systems. In order to ensure the safety of
the system users, certification authorities enforce development
guidelines both for systems (certification of the systems)
and system development tools (qualification of the certified
systems development tools). One way to reduce the cost
of verifying that the system is correct with respect to its
specification and design relies on the use of Automated Code
Generator in order to produce the source code automatically
from the specification and design models and then to produce
the binary executable from the source code (traditional com-
pilers). However, many reports of errors in ACG, especially in
compilers which can turn silently a correct safe program into
an incorrect unsafe executable code, enforce the awareness
that a special attention should be given to ACGs Validation
and Verification. Certification authorities usually require that
the ACG must be at the same level of safety as the systems it
partly generates. The V & V process should then start from the
earliest user and tool requirements at the specification phase

to reduce the risks of design errors up to the last steps of
deployment. Classical approaches of V & V relying mainly
on testing the executable code produced by the ACG and
reviewing the development items have been applied up to
now. However, exhaustive testing is impossible since it is not
possible to forecast all possible behaviours of the compiler and
usage of the input language. All the more, the cost induced
by the high coverage required for high level of safety is also
much too heavy. Therefore, such critical systems should rely
on rigorous V & V technologies based on formal tools in order
to both reduce the cost of testing and improve the safety by
going to exhaustive V & V.

Currently, formal tools such as Model Checking or Static
Analysis are used for models or programs. However, only the
specification or the source code are verified in these formal
techniques, compiler can invalidate the correctness of the
proved source code because of it errors. ACG developers are
aware of this issue and uses various techniques to reduce it,
such as manual review of the generated code, automatic tests
generation. These techniques are not complete and are costly
in terms of development time and program performance. A
better approach which has recently been applied to large scale
use cases by X. Leroy (see [1]) is to apply formal methods
to the compiler itself which preserves the semantics of the
source code. Our approach is based on this technique for a
formal certification of an ACG.

The development of the Model Driven Engineering tech-
nologies requires the use of automated code generators(ACG)
from design models to programming languages. Our contri-
bution relates experiments conducted using formal technolo-
gies for the verification and validation of an ACG produc-
ing real-time certified C code from a safe subset of Mat-
Lab/Simulink/Stateflow. Our main purpose is to ensure a zero
default result while reducing the costs of test and process based
qualification.

Until now, existing ACGs have been verified by standard
testing techniques. However, an exhaustive test coverage of
such tools still remains impossible, so that industrial research
requires formal modelling and verification techniques.

Many formal verification frameworks are available, such as
Translation Validation, Proof Carrying Code, static analysis
and modelling within proof-assistant. Moreover, verification
using a proof assistant seems very promising since the achieve-



ment of the CompCert project, aimed at certifying a C com-
piler (targeted at the PowerPC assembly language) with the
COQ tool.

The purpose of the experiment related in this paper is, on the
one hand, to validate an ACG specification, and on the other
hand to verify its implementation with respect to its specifi-
cation. The ACG is relatively different from available works
as it ought to translate a safe subset of Simulink/Stateflow to
C language instead of C programs to assembly language.

Due to the unstable and opaque semantics of
Simulink/Stateflow, which often changes depending on
its version, we first define the semantics of a safe subset of
Simulink/Stateflow. Then, we state the correctness properties
of ACG and we give the correctness proofs for the ACG
specification, inspired by the approach used in the CompCert
project. We propose to split the ACG into phases such as
typing, clock calculus, scheduling, memory optimisation...etc,
and to provide models with a synchronous semantics. This
kind of semantics is widespread in the European Embedded
Safety Critical Software Industries as advocated by tools such
as SCADE, Esterel or RT-builder.

Our work aims to develop a certified code generator in
Coq. The Code generator we developed is splited to many
intermediate modules before generating the target code (C).
In this paper, we focus on the scheduler process; it is an in-
dependent module from the other verifications such as typing,
clock calculus...etc

we present a simple verified scheduler developed and veri-
fied in the proof assistant Coq. Our reasoning is based on block
diagram structures. The remainder of this paper is organised as
follows. Section II recalls existing methods of verification and
validation techniques and their potential application to ACG.
Section III presents an introduction to the Coq proof assistant,
present our scheduler algorithm and the main theorems for its
verification. Section IV discusses the approach followed by
concluding remarks and perspectives.

II. VALIDATION AND VERIFICATION TECHNOLOGIES

The purpose of verification is to show that the produced tool
fulfil its requirements. Verification is usually done step by step:
verify that the tool requirements are correct with respect to the
user requirements, then that the design is correct with respect
to the tool requirements, and finally that the implementation
is correct with respect to the design.

The purpose of validation is to show that the tool fulfil
the user needs, this usually means, if the whole development
has been verified, that the user requirements are correct with
respect to the user needs.

One important point is that every parts from the user
requirements to the implementation can be formally defined.
The only step going from human informal knowledge to
formal definition is the requirement phase which express the
user needs using user requirements. Therefore this step can
only be validated using tests done by the user. It is possible
to check using tools that the user requirements are coherent,

even to a certain point complete, but only tests can show that
they are correct.

A. Classical approaches

Two main technologies are currently applied in the V & V
of critical systems: tests and system reviews. These are the
simplest possible approaches which can be applied in almost
any context and are very useful for finding errors but they do
not scale well to the complexities of systems and in particular
ACG. It is usually quite easy to define what are the realistic
inputs for a system. It is much more complicated for an ACG
as we must define what are the common use of a language
and this can change a lot from users to users.

1) System development reviews: A review consists in a
human proofreading of the various documents concerning a
system development in order to be convinced of the correct-
ness of the development.

2) Tests: A test provides both system inputs and outputs.
A system validates a test if it produces the required outputs
when it is submitted with the appropriate inputs. A test inputs
can be hand-written or generated to validate a given property.
A test outputs are usually hand-written, except if an oracle for
the system exists which can predict what the outputs will be
according to the inputs.

B. Application to the V & V of ACG

One major point in GeneAuto is the V & V of the code
generator itself. This point is of tantamount importance for the
success of the integration of formal technologies for V & V in
GeneAuto. After several rounds of exchange with the industrial
partners involved in certification authorities, the following
point have been put forward: “Qualification constraints as
defined by the certification authorities are more stringent for
code generation tools than code validation ones”. In fact:

• a code generation tool takes the place of a human code
writer, the produced code must then be qualified with
the same constraints as human written code, therefore
the code generation tool must be qualified with the same
level of constraints;

• a code validation tool helps a user in assessing that the
code he has written is correct, it is therefore only another
way of asserting the correctness of the code, but it is
only one more way which may, or may not, be used,
therefore it should not be qualified with the same level
of constraints.

The practical guidances which follow from these points and
are currently applied in the development of code generators
is that code generators should be as simple as possible and
that, if this is possible, some code generation services should
be expressed as model validation tools which validate that an
annotated model is a correct refinement from an initial model.
The following architectural principles for GeneAuto can be
derived from this point:

• GeneAuto toolkit should be split in several complemen-
tary tools: on the one hand model validation tools, and
on the other hand code generation tools;



• Several intermediate modelling languages should enable
the user to express the various annotations and properties
which enable a simple generator to produce optimised
target code. The fact that a model annotation are valids
and that the annotated model is a correct refinement of
the base model should be asserted by validation tools.
The code generator should therefore rely on the model
annotation in order to produce optimised code instead of
using information computed inside the generator itself.
The tool requirements are easier to express as it not
needed to define how to compute the annotation used
for the generation of optimised code inside the code
generation specification itself. The implementation is
easier to validate. The workload of annotating the models
is transferred to the user of the tools which provide the
annotated input models. One point is that these annotation
may only be required for specific optimisations and the
cost is only paid by the user of the optimisation service
not by all users.

One possible approach to reduce this additional workload
is to provide tools which helps the user in annotating the
intermediate models. These models are built by the user and
validated both by the user and the validation tools. These tools
are not annotated model generators but mere helper tools (such
as the sophisticated editors available in the current software
development environments). The user provides the base model,
these tools help the user in annotating the model, the annotated
model is then validated and the code is then generated from
the valid annotated model. There is then only a small overhead
in workload for the user and a much less expensive code
generator validation. Let’s note that the qualification of these
helpers at the same level as the produce models is still possible
and these tools can then be completely hidden from the user
which will input the base model and the tools will output the
generated code hiding the intermediate steps.

Currently, ACG are mainly defined in two steps:
• the user requirements express that a given language

(programming or modelling) must be translated to another
language

• the tool requirements define precisely how each elements
of the source language is to be translated in the target
language.

The correctness of the implementation with respect to
the tool requirements is currently mainly done by generated
code reviews. For tests expressing each elements, and some
combination of elements, the generated code is compared with
the code predicted using the tool

C. Requirements for the architecture of the ACG

This part will give insights on the GeneAuto ACG archi-
tecture which is presented in more details in [2].

The following steps and intermediate languages (mostly the
input and output languages which various kind of annotations)
are currently in use in the first prototype of the GeneAuto
ACG:

• Type annotation for signals in the block diagram. The
validation that these annotations are compatible with the
types of the blocks input and output ports;

• Scheduling annotation for the blocks. Validation that
these annotation are compatible with the data flow con-
straints expressed by the signal connecting the blocks
input and output ports;

• Sharing annotation for the various signal whose values
are exclusively required and which may be stored in the
same variable in the generated code (the basic generation
strategy use one variable for each signal, this allow to
reduce the number of variable to the minimum required
for the sequential execution of the blocks in the schedule
expressed by the annotation in the input model). Valida-
tion that each required signal value is available when a
block is scheduled;

• Enabling condition annotation which allows to execute
only the blocks which computes the signal values re-
quired to compute a block output signal values. This
is, for example, a backward propagation of enabling
condition in the various branches of conditional blocks.
Validation that each required signal value is available
when a scheduled block is enabled.

The following steps have been introduced for the final
version of the ACG to manage requirements currently not
taken into account by the current prototype:

• Clock (sampling rate) annotation for blocks in the Ge-
neAuto input language. Validation that each required
signal value is available when a block is scheduled,
enabled and at the right clock tick (memory or rate
adaptation blocks are inserted at the right places);

• Usage of data flow design patterns to express control flow
such as proposed by M. Pouzet and J-L. Colaço. In fact,
control flow is expressed using common data flow signals
and blocks. These specific signals and blocks are then
annotated to express their relationship with the implicit
control flow diagram. Validation that the annotation ex-
presses a well formed control flow diagram. A helper
will allow the user to view the control flow diagram
corresponding to the annotated data flow diagram.

D. Formal technologies based improvements

As usual, the validation of a code generator must assert that
the implementation of the code generator is compliant to the
requirements expressed in the specification. There is usually
two kind of requirements:

• User level requirements: These requirements define the
input and output languages, their syntax and semantics,
mandatory design and coding rules. They also define the
set of high level property that the generator must fulfil
(for example, the behaviour of the generated code is
the same as the behaviour of the input model on both
functional and non-functional aspects).

• Tool level requirements: These requirements are derived
from the previous ones. They express precisely how



each concept and relation from the input language must
be translated to concepts and relations from the output
language. More abstractly, they relate the input language
and the part of the output language which is mapped from
the input language.

Formal validation technologies can be applied to both kind
of requirements:

• Formal specification of the requirements are always a
good point as they ease the validation of the implementa-
tion using any validation technologies (even only tests).
In the case of ACG, the formal specification must express:

– The input and output languages, that is, their syn-
taxes, execution semantics (operational), validation
semantics (axiomatics), and design rules. This is part
of the user requirements.

– The translation rules (relation between input and out-
put languages). This is part of the tool requirements.

• The assessment that the tool requirements have been
taken into account requires to check that the generated
code for each model strictly follow the relationship
expressed in the translation rules whatever the seman-
tics of the languages. This means that the translation
rules are taken as correct hypothesis. To our knowledge,
formal technologies have not been commonly used in
this purpose. In fact, the translation rules are an ex-
ecutable specification. Therefore an implementation of
this executable specification, which might not follow
the translation rules, is usually not required. However,
if another implementation is required, for example to
take into account scalability constraints or to manage
some specific constraints introduced by the certification
authorities for tools implementing code generators, we
propose the following approaches:

– Oracle based automatic tests: When a code generator
is applied to an input model, we also apply the
executable specification to the same model if this is
possible (scalability constraints) and then we check
that both results are syntactically equivalent. The
formal specification of the translation is therefore an
oracle which allows to validation the implementation
of the code generator. The validation procedure can
then generate a huge amount of input models, apply
both executable specification and code generator and
check that both results are equivalent. This procedure
can use test coverage technologies in order to pro-
duce the right kind of tests and cover most of the
input language. We can, for example, rely on the
users experience in order to define common model
patterns for which the coverage should be better.

– Enhanced source level comparison of generated
code: The checking in finite time that two programs
do the same thing is an undecidable and incomplete
problem. It is however possible to have less coarse
comparison procedure than mere string equality by
using a bounded subset of the behaviour equivalence

relation between programs. Practically, the behaviour
equivalence relation is expressed as rules relating
programs in the same language which have the
same behaviour (for example, if C B1 else B2
behaves the same as if !C B2 else B1). Then
a bounded number of rules can be applied in order to
show that two programs are equivalent. This is a kind
of equational unification bounded by the number
of equation which can be applied. This kind of
technology has already been experimented by IRIT
for comparing service in SOA architectures on the
computing Grid.

E. Formal technologies for V & V of ACG

ACG are complex pieces of critical softwares since they
perform delicate code transformations. Bugs in compilers
provide incorrect generated code from correct source pro-
grams. In order to reduce the error risks, many verification
approaches were developed these techniques can be formal
and test based techniques. Formal methods such as Model
Checking, Static Analysis, Proof Carrying Code, Translation
validation, Certified Compiler the technique on which we are
inspired.

In this section, we describe the most prevalent techniques.
1) Proven Development: The certification using Coq proof

assistant [1], of an optimising back-end that generates Pow-
erPC assembly code from a simple imperative intermediate
language called Cminor. The compiler was written mostly
in Coq directly in functional style. This technique is very
promising in the verification validation domains. The tech-
nique was applied to a critical system. The principle of the
technique is to divide the compiler to independent successive
transformations; each transformation is proved correct in Coq.
The formal semantic of all intermediate used languages was
defined, and then, an executable code was extracted from the
compiler specification.

2) Certified Development: Certified development [1]: This
kind of technique allows to build a correct system by con-
struction starting from a specification of the system required
properties and then applying iteratively refinement rules which
allow to build the system without breaking the properties in
the specification. The implementation is then derived from the
specification. Each refinement step must then be proven to be
correct. Proof requirements are built from each refinement step
which ensure this correctness property. These requirements
must then be proven using a proof assistant.
The most successful certified development approach is the B
methodology which has been applied to the development of
many critical systems in railways and automotive industries.

3) Proof Carrying Code: Proof Carrying Code (PCC) [3]
is a technique that was developed to be used for safe execution
of untrusted code. Initially, the approach was applied to verify
mobile code by validating the received code without applying
cryptographic techniques.

The principle of the PCC is to return, as well as the
generated code produced by the compiler, the proof of the



property P(S,C) which is checked independently by the code
user. The key idea behind PCC is that the code producer is
required to create a formal safety proof that attests to the fact
that the code respects the defined safety policy. Then, the code
consumer is able to use a simple and fast proof validator to
check, with certainty, that the proof is valid and hence the
foreign code is safe to execute.

PCC has many uses in systems whose trusted computing
base is dynamic, either because of mobile code or because of
regular bug fixes or updates.

Its use is extended to be used in many applications such
as : extensible operating systems, Internet browsers able to
download code, active network nodes and safety-critical em-
bedded controllers. PCC and credible compilation [4] make
use of a certifying compiler. Hence, the certifying compiler
can produce an incorrect proofs.

4) Translation Validation: Translation validation was intro-
duced by Pnueli in 1998 [5], [6], [7], [8] as a technique to
detect translators bugs at compilation process.

Instead of proving in advance that translators (compilers,
code generators) produce correct target from a source code,
each run of the compiler is validated; the validation process
consists to verify that the generated code implements correctly
the source code.

Technically, the translation validation approach comple-
ments the compiler by a verifier Verif(S,C) which verifies a
correctness property P(S,C) by static analysis of S the source
code and C the generated code.

The following formula must be verified to certify the
verifier.
∀SC, V erif(S, C) → Prop(S, C)
As the verifier is another tool which is also error prone,

there is no guarantee that the generated code, be it correct or
not, will or not pass through the verifier.

J-B.Tristan and X.Leroy have recently [9] developed 2 val-
idator corresponding to 2 instruction scheduling optimisations:
list scheduling and trace scheduling.

Most of the verifier currently in use rely on model checking
or static analysis technologies.

5) Model Checking: Model checking is a fully automated
technology which rely on building explicitly or implicitly
the reachable state space for all the possible execution for
a given system in all possible execution contexts and then
to check that the required properties are valid in all these
states. If the property is not valid, it is then possible to build
a counter-example, that is an execution going from an initial
state to the state which breaks the property. This approach is
usually complete and decidable if the state space is finished
and if enough resources (computing power and storage) are
available to build it. If not, the models or properties should be
simplified (abstraction) manually or automatically in order to
reach completeness and decidability. The technique of model
checking is used in systems with finite tests. However, in the
case of critical systems, the infinite cases to test disable the
use of Model Checking technique. Even in finite cases, model
checking do not scale well and all experiments conducted

previously for ACG could not be applied on real size industrial
cases.

6) Static Analysis: One potential approach to reduce the
number of execution contexts and execution steps is to ap-
proximate the semantics of the system and of the fix-point
computations required to compute it. This approach, which
can be used for programs and models, will either produce false
alarms (the property is not valid for the abstract system but is
valid for the concrete one), or be unsound (the property is valid
for the abstract system but is not valid for the concrete one).
This depends on the way the systems are approximated by the
abstraction relation. Only the first kind of static analyses can
be used for critical systems, that is a static analysis should
not be unsound. Several technologies have been devised in
order to define static analyses tools. Some require the proof
of soundness (for example, type inference or type checking),
some rely on a correct by construction soundness (for example,
abstract interpretation). Type based static analyses [10], [11]
are in use in most currently available compilers. Abstract
interpretation is at the basis of the successful tools PolySpace,
AbstInt and ASTREE. Static analysis have been used for
ACG V & V by X. Rival (see [12], [13]) in a variation of
translation validation where static analysis is used instead of
model checking. However, it is very complex to prove the
correctness of static analysers.

F. Synthesis for GeneAuto

The validation of the refinement of the user requirement to
the tool requirement consist in assessing that the translation
rules expressed in the tool requirement are correct with respect
to the semantics of the input and output languages. For
example, it must be asserted that the execution of the code
resulting from the translation of a given model is the same
as the execution of this model. The comparison relation can
take into account both functional and non-functional aspects.
Formal technologies are well adapted to this kind of validation
and many medium to full size experiments have already been
conducted in previous projects for programming language to
assembly language code generators.

In the first year of the GeneAuto project, we have compared
the various V & V technologies both classical and formal
in order to choose the best suited technologies and show the
improvements it could bring to the usual industrial practices
in the field.

The criteria chosen for the comparison were the following
ones:

SL Cost of the specification of the input and output
languages: This is the cost of providing the supple-
mentary information required for using the technol-
ogy with respect to the standard specification of the
languages. A mark means that no additional input is
required apart from the input model simulator and
the output language processor. E mark means that
everything must be redefined;

ToU Cost of the use of the validated tools: This is the
cost introduced by the use of the validated tools with



respect to the use of the invalidated code generator.
A mark means that there is no additional costs;

TD Tools developments costs: This is the additional cost
of developing a validated tool with respect to the
development of an invalidated one. A mark means
that there is no additional cost;

QT Qualification cost: This is the additional cost for
validating the tools with respect to the development
of non qualified tools. A mark means that there is
no additional cost;

TeU Technology usage costs: This is the additional cost
of learning how to use the validation technology with
respect to the classical development of the tools. A
mark means that there is no additional cost;

TS Scalability: This shows the ability of applying the
tools to real size models. A mark means that any
models can be managed;

UC Real size use case: This shows that this technology
has already been applied to real input and output lan-
guages. A mark means GeneAuto level complexity
of languages;

FT Fault tolerance: This shows the risk of validating
tools which are in fact invalid. A mark means that
the technology ensure that a validated tool is valid.
This score points out that the validation may rely on
external validation tools which may be themselves
invalids;

CA Certification authorities practices: This is a first rat-
ing provided by the GeneAuto WP6 partners relating
the V & V technology to the current practises in
the certification authorities. This is the cost required
to convince the authorities that the technology can
be used for qualification. A mark means mostly no
additionnal costs.

These criteria have been used to compare the following
technologies:

• Proven development (PD), Certified development (CD),
Testing with oracles (TO), Translation validation (TV),
Static analysis (SA) which are the same technologies
which have been described previously in the communi-
cation.

• Assessment translation (AT) is a technology which is
specific to code generator. It relies on a translation of
the assessment which have convinced the user that its
input model is correct. The principle is then to translate
the model and then to check that the assessments still
hold and convince the user that the generated code is
still correct. This approach can be applied very easily to
the test scenario designed for the model. If these tests
have been expressed as models, they can be translated as
tests at the code level and applied on the generated code
for the model. Notice that the whole model execution
environment should then be described in the modelling
language.

It led to the synthesis expressed in table I.

PD CD TO AT TV SA
SL 3 4 0 2 1 4
ToU 0 0 0 2 3 3
TV 2 4 0 1 2 4
TQ 0 0 4 1 2 2
TeU 3 3 0 1 2 4
TS 0 0 4 2 3 3
UC 2 1 0 4 2 2
FT 0 0 4 1 2 3
CA 1 0 0 1 2 3

TABLE I
SYNTHESIS OF V & V TECHNOLOGIES

The previous synthetic table allowed to choose the technolo-
gies which would be experimented first in GeneAuto. A very
strong point was the fact that the technology used should be
the most error-prone as no certification authorities would allow
to choose an error-prone technology event if it was better for
all the other criteria.

To conclude, it is required to provide formal specifications
of the input and output languages and of the translation
between them. Then, two kind of validation should be con-
sidered using as far as possible formal technologies. Then,
both kind of validation should be considered: validation of tool
implementation with respect to tool requirement and validation
of tool requirement with respect to user requirement. The first
kind is related to the validation currently in use for this kind
of tools in the industrial partners practise. The second kind
validation the refinement between the requirements and can
provide much higher confidence in the produced tools. It also
correspond to the current state of the art in academic research.
We therefore advocate to experiment both kind of validation
with the most appropriate technologies.

One last important point is the chosen architecture for the
toolset. There should be several intermediate steps for the
building of the GeneAuto input language annotated models
with helpers and validation procedure in order to reduce the
workload and ensure the correctness of the model refinements.
The code generator should apply on fully annotated models in
order to be the most simple as possible and therefore more
easy to validate.

III. PRELIMINARY EXPERIMENT: SCHEDULING
ALGORITHM

Before presenting our approach, let us introduce the system
Coq and how it is used.

A. The Coq Proof Assistant

In this section we briefly introduce some principles of the
Coq proof assistant and illustrate them with block diagrams
specifications. The system is described in detail in [14].



There are various proof assistants, namely, Nqthm [15],
Nuprl [16], Isabelle [17],Lego [18], Hol [19], PVS [20] and
ACL2 [21]. They are distinguished by different criterions
defined by De Bruijn. For further information see [22]. Coq is
a proof assistant in which we can express specifications and
develop applications that respect these properties. It is being
used to develop safe applications in various domains such
as algorithms, automata theory, logic and in real-life critical
applications. Proofs are built in an interactive way with the aid
of automatic search when possible called tactic. Coq departs
from the proof assistant family by its possibility to generate
certified code and relatively efficient functional programs
by extracting them from the proofs of their specifications.
The functional languages available as output are currently
Objective CaML, Haskell and Scheme.

The Coq language is based on the Calculus of Construc-
tions [23], completed with inductive and co-inductive type
definitions: inductive types are used to handle finite values
with primitive recursion, while co-inductive types are used to
express infinite values (such as streams). There is a relation
between proofs and programs:

Term ⇔ Type
⇓ ⇓
Proof ⇔ Program

In the underlying logic of Coq, proofs are considered
as programs and types as terms. Proving an expression is
equivalent to giving a program belonging to this type.

Terms can be built using quantifiers, pattern matching,
functional abstractions and applications, as well as many
other classical constructions found in functional programming
languages.

As types are terms, they have themselves types called
sorts. Types can represent programming datatypes or logical
propositions. this is expressed using the special sort Set as
the type of datatypes and Prop as the type of propositions.

B. Language specification

The idea is to develop the whole code generator within
the Coq framework, specify all needed properties and build
proofs in order to verify their correctness. Every module of
the generator will be implemented and verified using Coq.
This approach guarantees a correct extracted code, preserving
the correctness properties proved in the Coq source code.

We will focus in this paper on the Scheduler module, which
is a first step before any execution or code generation. Giving
a block diagram we must prove that all blocks are executed in
a correct order. The correct order should be the same as given
by Matlab/Simulink.

We have specified the language of block diagrams in the
Coq tool and have written a verified scheduler. In this section,
we will illustrate our specification of block diagrams.

The primitive functional blocks of Matlab/Simulink are
defined as instances of the inductive type blockop denoting
the block operators. For the sake of conciseness, we consider

in our case study a very small subset of the Matlab/Simulink
library :

Inductive blockop : Set :=
| InputExt : nat -> blockop
| OutputExt : nat -> blockop
| Sum : nat -> blockop
| Mult : nat -> blockop
| Div : nat -> blockop
| Delay : blockop

...

end.

The type blockop is of type Set, it introduces all construc-
tors of the considered subset of Matlab/Simulink blocks, such
as Sum the constructor of addition operators.

Two particular blocks play a special role in our block
diagram specification : InputExt and OutputExt which
respectively correspond to the global inputs and the global
outputs of the circuit. Most operators take a natural number as
an extra parameter, it represents the number of input arguments
because this number may vary for a given operator. The
delay block always has a single input argument, therefore this
number is not mentioned in its type.

Base blocks are defined using the record construction.
The record type is an inductive type that represents data
clusters, like tuples in mathematics or records in programming
languages.

Record blockBase : Set :=
{b : blockop;
inportB : list evaltype;
outportB : list evaltype;
indexB : nat}.

Each base block gathers 4 fields : a block operator, a list of
input types, a list of output types and an integer which is used
to index the base block, which makes easier the distinction
between duplicated blocks. Notice that nothing is connected
to the InputExt block and nothing is connected from the
Output block.

First, we define block interfaces, representing a specific
input or output ports. They are given as pairs of natural
numbers, each pair respectively denoting the block number
and the port number for that particular block. Then, we define
a connection between a block output and a block input.
This connection is defined with 2 interfaces corresponding
respectively to the source and to the target interface.

Inductive intport (A :evaltype) : Set :=
InternalPort : nat -> nat -> intport A.

Inductive extport (A:evaltype) : Set :=
ExternalPort : nat -> nat -> extport A.

Inductive connexion (A : evaltype): Set :=
CNX : extport A -> intport A -> connexion A.



A diagram is defined using a record construction with 2
principal fields: the list of circuits that constitute the blocks
of the diagram, and the list of all connections of the diagram
which describes how blocks are connected to each others.

Record diagram (circuit : Set) : Set :=
{block_list : list circuit ;
connexion_list : list (connexion EV) ;
inportD : list eval_type ;
outportD : list eval_type ;
indexD : nat}.

Finally, block diagrams are constructed from base blocks
or other diagrams. The inductive type definition circuit
is defined by 2 constructors : Block corresponding to base
blocks and Diagram which allows to recursively define
subcircuits.

Inductive circuit : Set :=
| Block : blockBase -> circuit
| Diagram : diagram circuit -> circuit.

We consider for the rest of the paper the block diagram
depicted in figure 1.

1/z

Div

Sum

Mult

Input

Output

B

C

D

E F

A

Fig. 1. A sample diagram

An example of how we create the Coq data structure
corresponding to this diagram is given in the Annex section.

C. Scheduler Module

As said earlier, we focus on the specification and verification
of the scheduler process of the code generator.

The algorithmic specification of the scheduler relies on
Environment functions which compute, for each block of the
considered diagram, its corresponding rank.

Environment : block -> rank

The rank of a block can be a numerical value for blocks
whose scheduling constraints we already know, or be unde-
fined otherwise. Initially, all blocks have an undefined rank
which corresponds to Bottom in the rank inductive definition.

Inductive rank : Set :=
| Num : nat -> rank
| Bottom : rank.

Furthermore, rank elements enjoy a (very simple) well-
founded partial order structure, provided by the following lt
ordering relation. Exhibiting such a relation is mandatory in
order to prove that our scheduling algorithm terminates.

Definition lt (r r’ : rank) : Prop :=
match r, r’ with
| Bottom, Num _ => True
| _ => False
end.

From this strict order, we easily derive le as the corresponding
non strict order. These orders between ranks are canonically
extended to environment functions, with s an extra parameter
which represents the number of blocks of a given diagram
(numbered from 0 to s− 1).

Definition le_Env s (e e’ : Environment) :=
forall k, k < s -> le (e k) (e’ k).

Definition lt_Env s (e e’ : Environment) :=
le_Env s e e’

/\ exists k, k < s /\ lt (e k) (e’ k).

In the same example, the initial environment is :

Env =



blockA 7→ ⊥
blockB 7→ ⊥
blockC 7→ ⊥
blockD 7→ ⊥
blockE 7→ ⊥
blockF 7→ ⊥

The scheduler takes as input the considered diagram to
schedule and the initial environment, and computes a final rank
environment, taking into account each scheduling constraint
of the circuit. For each recursive call of the scheduler, a new
environment is computed; the new environment depends on the
previous environments computed until now. This dependency
is expressed by the Forward function. Roughly speaking, this
function, for a diagram d, first tests whether the block index
k is valid or not. Then, in the environment E, the ranks of
fan-ins (or feeding blocks) of block k are considered and the
maximum rank is computed. Finally, this rank is incremented
before being returned as the new rank of block k. Hence, for
each block we compute a new rank, possibly different from
the one defined in E, yielding a new environment.

Definition Forward (d : diagram circuit) :
Environment -> Environment :=
fun E k =>
if (valid_index k d)
then succ_rank (max_rank E d (Fanins d k))
else Bot.

Function Scheduler_rec (d : diagram circuit)
(E : Environment) {wf (gt_Env d) E} :=
if (le_Env_dec d (Forward E d) E)
then E else Scheduler_rec d (Forward E d).

Definition Schedule (d : diagram circuit) :=
Schedule_rec d (fun k => Bottom).

For the sake of room, we don’t detail here the auxiliary
functions involved in the definition of Forward. The only



important point lies in the way delay blocks are handled. As
these blocks often occur in (well formed) feedback loops, their
ranks as output devices must be distinguished from their ranks
as input devices, whereas other memoryless base blocks don’t
need such a distinction. The output rank of a delay block is
always 0 because the stored value is present at the beginning
of every execution cycle. For that purpose, we indeed compute
the input rank of a block as a function of the output ranks of
its feeding blocks. In this respect, modelling of such a delay
operator frequently makes use of two distinct blocks. The
scheduler computes environments iteratively through recursive
calls, until no new defined ranks are generated. When applying
the scheduler algorithm to the previous diagram, we obtain the
following environments :

Env1 =



blockA 7→ 0
blockB 7→ ⊥
blockC 7→ ⊥
blockD 7→ 0
blockE 7→ ⊥
blockF 7→ ⊥

· · · Env5 =



blockA 7→ 0
blockB 7→ 1
blockC 7→ 2
blockD 7→ 3
blockE 7→ 4
blockF 7→ 5

D. Correctness of the scheduler

The scheduler module was proved correct with the Coq
proof assistant. To establish the termination of the algorithm,
we had to define and prove two main theorems required by
the Coq proof assistant:

• the first theorem states that each recursive call brings new
information about the rank of some block, or equivalently
that the Forward function is monotone:
Theorem Forward_mono : forall E E’ d,

lt_Env E E’
-> lt_Env (Forward d E) (Forward d E’).

• the second theorem states that bringing new information,
as proved by the previous theorem, is a process that
cannot go on forever. This amounts to prove that the order
relation gt_Env is well founded.
Theorem gt_Env_wf : forall d,
well_founded (gt_Env (size d)).

Beside these theorems, many auxiliary lemmas were defined
and proved in order to facilitate the overall scheduler proving
process.

The most important part is to prove the adequacy of our
proposal with respect to what should provide a scheduling
algorithm. We also need two properties:

• each block with a defined rank, has its rank strictly greater
than the rank of its fan-ins.
Theorem num_rank_spec : forall d b,
let R := Schedule d b in
R b <> Bottom -> forall b’,
In b (Fanins d b’) -> gt (R b) (R b’).

• each block with an undefined rank is involved in a cyclic
memoryless (i.e. without delay blocks) path in the circuit.
This kind of path raises causality issues, is considered
harmful and thus forbidden.

Theorem bottom_rank_spec : forall d b,
let R := Schedule d b in
R b = Bottom -> In b (BadLoops d).

IV. CONCLUSION

Our work aims at developing a certified automatic code
generator and we chose for this purpose to use the Coq proof
assistant. We divide the code generation into several steps :
scheduler, typer, clock calculus, code generation and finally
code optimisation. Our approach is inspired by the works of
Xavier Leroy in certifying a compiler using the same proof
assistant.

This paper reports on a first step, the specification and
verification of the scheduler process in Coq.

We have described the input language of the code generator
in the Coq tool and we have developed the scheduler algorithm
which determines in which order blocks must be executed.
The main interest when using Coq is that an implementation,
as a piece of Caml code, can be automatically generated
without any development effort. This coding phase, when
achieved with traditional means, is well known for introducing
undesired discrepancies between the specification of a system
and its implementation.

Indeed, proving a Coq specification is a tedious task, but
far less tedious than directly proving a code generator written
in a standard programming language. All the more than, as far
as we know, existing such generators were not designed and
developed with a forthcoming rigorous correctness proving
phase in mind, thus burdening this very proof task.

The scheduler is only a first step towards a complete code
generator. The next work is to develop a typing module for
our block diagram language. It seems to be more complicated
since for instance the Matlab/Simulink library contains base
blocks whose instantiations may each belong to a different
type. Not only input or output types, but also the number of
ports for a given block, may vary.

However, we have developed our scheduler in a quite
generic way that will help us in factoring out and reuse several
parts of the proofs for the typing phase. This also applies to
the clock calculus that we will consider later. Last, we have
developed an inlining module that expands a diagram into a
flat circuit of simple base blocks. This module was used to
detect delay blocks hidden in hierarchical diagrams.

V. ANNEX

(*BEGIN SAMPLE CIRCUIT*)
Definition blocA := Block(Build_blockBase
(InputExt 3)(nil)(Int::Int::Int::nil)(0)).
Definition blocB :=Block(Build_blockBase
(Sum 2)(Int::Int::nil)(Int::nil)(1)).
Definition blocC := Block(Build_blockBase
(Div 2)(Int::Int::nil)(Int::nil)(2)).
Definition blocD := Block(Build_blockBase
(Delay)(Int::nil)(Int::nil)(3)).
Definition blocE := Block(Build_blockBase
(Mult 2)(Int::Int::nil)(Int::nil)(4)).



Definition blocF :=Block(Build_blockBase
(OutputExt 1)(Int::nil)(nil)(5)).

Definition CNX_Input_Sum1 := CNX
(ExternalPort 0 0)(InternalPort 0 1).
Definition CNX_Input_Sum2 := CNX
(ExternalPort 1 0)(InternalPort 1 1).
Definition CNX_Input_Div1 := CNX
(ExternalPort 2 0)(InternalPort 0 2).
Definition CNX_Input_Div2 := CNX
(ExternalPort 0 3)(InternalPort 1 2).
Definition CNX_Sum_Mult1 := CNX
(ExternalPort 0 1)(InternalPort 0 3).
Definition CNX_Div_Mult2 := CNX
(ExternalPort 0 2)(InternalPort EV 1 4).
Definition CNX_Div_Delay := CNX
(ExternalPort 0 2)(InternalPort 0 3).
Definition CNX_Mult_Out:= CNX
(ExternalPort 0 4)(InternalPort 0 5).

Definition diag :=(Build_diagram circuit
(blocA::blocB::blocC::blocD::blocE::nil)
(CNX_Input_Sum1::CNX_Input_Sum2::
CNX_Input_Div1::CNX_Input_Div2::
CNX_Sum_Mult1::CNX_Div_Mult2::
CNX_Div_Delay::CNX_Mult_Out::nil)
(Int::Int::Int::nil)
(Int::nil)
(0)).

Definition sample_circuit :=
Diagram diag.
(*END SAMPLE CIRCUIT*)

REFERENCES

[1] X.Leroy, “Formal Certification of a Compiler Back-end or Programming
a compiler with a Proof Assistant,” In POPL’06, 33rd Symposium on
Principles Of Programming Languages, Jan. 2006.

[2] A. Tooms, T. Naks, M. Pantel, M. Gandriau, and I. Wati, “Formal
Certification of a Compiler Back-end or Programming a compiler with
a Proof Assistant,” In ERTS’08, 4th European symposium on Real Time
Systems, Jan. 2008.

[3] G. C. Necula and P. Lee, “Research on proof-carrying code for untrusted-
code security,” in IEEE Symposium on Security and Privacy. IEEE
Computer Society, 1997, p. 204.

[4] “The Calculus of constructions ,” 1999.
[5] A. Pnueli, M. Siegel, and E. Singerman, “Translation validation,” vol.

1384, pp. 151–166, 1998.
[6] G.-C. Neculae, “Translation Validation for an Optimizing Compiler,” pp.

83–95, 2000.
[7] X. Rival, “Symbolic transfer function-based approaches to certified

compilation.” pp. 1–13, 2004.
[8] Y. F. L. D. Zuck, A. Pnueli and B. Goldberg, “VOC: A translation

validator for optimizing compilers,” vol. 65, 2002.
[9] J-B.Tristan and X.Leroy, “Formal Verification of translation Validators-

A Case Study on Instruction Scheduling Optimizations,” In POPL’08,
35th Symposium on Principles Of Programming Languages, Jan. 2008.

[10] “Extracting a data flow analyser in constructive logic,” vol. 2986, 2004.
[11] “Automated soundness proofs for dataflow analyses and transformations

via local rules,” 2005.

[12] X. Rival, “Invariant translation-based certification of assembly code,”
International Journal on Software and Tools for Technology Trasnfer,
vol. 6, no. 1, pp. 15–37, july 2004.

[13] ——, “Symbolic transfer functions-based approaches to certified com-
pilation,” in 31st Symposium on Principles of Programming Languages,
X. Leroy, Ed. ACM, janvier 2004, pp. 1–13.

[14] “Interactive Theorem Proving and Program Development : Coq-Art: The
Calculus of Inductive Constructions,” 2004.

[15] R. Boyer, M. Kaufmann, and J. Moore, “The boyer-moore theorem
prover and its interactive enhancement,” 1995. [Online]. Available:
citeseer.ist.psu.edu/boyer95boyermoore.html

[16] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, J. T. Sasaki, and S. F. Smith, Implementing Mathematics
with the Nuprl Development System. NJ: Prentice-Hall, 1986. [Online].
Available: citeseer.ist.psu.edu/constable86implementing.html

[17] L.-C. Paulson, “The Isabelle reference manual, Tech. Rep. 283, 1993.
[Online]. Available: citeseer.ist.psu.edu/paulson95isabelle.html

[18] R. Pollack, “The theory of LEGO: A proof checker for the extended
calculus of constructions,” Ph.D. dissertation, 1994. [Online]. Available:
citeseer.ist.psu.edu/pollack94theory.html

[19] M-J-C. Gordon, “Mechanizing programming logics in higher-order
logic,” in Current Trends in Hardware Verification and Automatic
Theorem Proving (Proceedings of the Workshop on Hardware
Verification), G.M. Birtwistle and P.A. Subrahmanyam, Eds. Banff,
Canada: Springer-Verlag, Berlin, 1988, pp. 387–439. [Online].
Available: citeseer.ist.psu.edu/gordon88mechanizing.html

[20] S. Owre, N. Shankar, and J. M. Rushby, User Guide for the PVS
Specification and Verification System. CSL, 1995. [Online]. Available:
citeseer.ist.psu.edu/owre93user.html

[21] M. Kaufmann and J. S. Moore, “An industrial strength theorem prover
for a logic based on common lisp,” IEEE Trans. Software Eng., vol. 23,
no. 4, pp. 203–213, 1997.

[22] “The mathematical language automath, its usage and some of its
extentions.” vol. 125, 1970.

[23] “The Calculus of constructions,” vol. 76, 1988.


