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MotivationFollow-up to Ralph Matthes’ presentation of May 19, 2009.Some aspects of Ralph’s presentation:– Extension of simply-typed λ-calculus with new reduction rules;– Proof of termination (a.k.a strong normalisation)using a simulation technique;– Introduction of “garbage” to fit the hypotheses of the technique.

This presentation:– My position: garbage is dirty :-)– Introduction of a new abstract technique for termination proofs;– Application to two λ-calculi.
Work during my PhD [Chemouil, 2004] and recently publishedin [Chemouil, 2008]. However, these results were never presented(in this shape) in a conference until now.
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Deciding equivalence

A general, common, setting:– “Objects”: terms, graphs, λ-terms...– Identities t = u between objects.Identities induce an equivalence relation ≈ on objects.However, given two arbitrary objects:can we decide whether they are equivalent w.r.t the relation?
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Rewriting

An approach:convert the n identities into m > n reduction rules t → u,such that the equivalence closure of → yields precisely ≈.Now, → converges if:termination : every reduction sequence terminates;confluence : any “fork” can be closed.
Proposition
→ converges ⇒ ≈ is decidable.
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Abstract reduction systems

DefinitionAn abstract reduction system (ARS) is given by a set A of objects anda set {→R | R ∈ I} of binary relations on A.
→R is sometimes written R . Now some other notation:

←R := →R
−1

→R B→S := {(x , z) | ∃y ∈ A · x →R y ∧ y →S z}
0→R := {(x , x) ∈ A2}
n+1→ R := n→R B→R
∗→R := ⋃

n>0

n→R+→R := ⋃
n>1

n→R

→RS := →R ∪→S
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Relational and diagrammatic notations

Proving properties of ARS will often lead to formulas of the shape:
∀r · r →R r ′ ∧ r →S r ′′ ⇒ ∃r ′′′ · r ′ ∗→S r ′′′ ∧ r ′′

∗→R r ′′′

Their relational representation is often more readable:
←R B→S ⊆

∗→S B
∗←R

. . . as is the diagrammatic representation:
R

����
��

��
�

S

��
??

??
??

?

S

∗
** R

∗
tt
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Termination

DefinitionGiven a binary relation →R on A, the set SN of terminating objects isthe smallest one such that ∀r (∀s · r →R s ⇒ s ∈ SN)⇒ r ∈ SN.This is classically equivalent to saying that, for any object in SN,there is no infinite reduction sequence starting from this object.
DefinitionLet R be a reduction relation on a set A. Then R terminates,written R |= ⇓, if all objects in A are terminating under R .
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Proving termination

Now, how to show termination of a rewriting system?

– Be clever: semantic approaches (e.g. Tait-Girard);– Be masochistic: show that the reduction relation isa well-founded ordering by exhibiting a nice measure A→ N;– Be lazy: compose easily-proven results about subsystemsusing lemmas on ARS.
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Adjournment

Lemma (Adjournment)Let R and S be ARS s.t.:– R |= ⇓– S |= ⇓– S B R ⊆ R B (RS)∗ (adjournment).Then RS |= ⇓.
S

����
��

��
�

R

��

R ** RS

∗
tt

Proof.Suppose R |= ⇓, S |= ⇓ and S B R ⊆ R B (RS)∗. Suppose RS doesn’tterminate: then there is an infinite sequence of RS-reductions, alternatingfinite fragments of R- and S-reductions, as R |= ⇓ and S |= ⇓. Runningalong the sequence from the beginning, “lift” an R-reduction every time
S B R is met, building a new infinite RS-sequence. Iterating this process,an infinite R-reduction subsequence is built. Contradiction. ∴
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Simulation

DefinitionLet T and U be two ARS. An application |−| from the carrier of Tto that of U is:– a weak simulation if r →T s ⇒ |r | ∗→U |s|;– a simulation if r →T s ⇒ |r | +→U |s|.
LemmaLet T and U be two ARS. If there is a simulation from T to U ,then U |= ⇓ ⇒ T |= ⇓.
Proof.Suppose T doesn’t terminate: then there is an infinite sequence of
T -reductions. Simulating it yields an infinite sequence of U-reductions(as the simulation produces at least one U-reduction for any T -reduction).Contradiction. ∴
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Reductio ad absurdumQuite a number of termination proofs on ARS rely on reductio ad
absurdum. The general argument to show the termination of T , giventhe termination of U , is the following:– Suppose T doesn’t terminate, i.e there is an infinite sequence of

T -reductions;– Provide a constructive way to build an infinite sequence of
U-reductions out of any sequence of T -reductions;– Derive a contradiction.
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Prosimulation

DefinitionLet U be an ARS and S be a binary relation on the domain of U .Then S prosimulates U if S B→U ⊆
∗→UB S.

S

��

U∗
//

S

��
U

//
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Insertion

DefinitionLet U , T be ARS, S a relation, u a finite sequence of U-reductionsbeginning with an object t and (t, t ′) a T -reduction, s.t.:– S prosimulates U ;– and (t ′, t) ∈ S.Define an insertion operator Θt,t ′
S by recursion on u:– If u is empty, insert the T -reduction: Θt,t ′

S (u) := (t, t ′) ∈ T .As (t ′, t) ∈ S, we have: t ′

S

��

t

T
22

t
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Insertion (cont.)

Definition (cont.)– Otherwise, u = v B r with v ∈ U∗ and r ∈ U . Then, we haveΘt,t ′
S (u) := Θt,t ′

S (v ) B r ′ with:

S

��

r ′∈U∗
//

S

��

Θt,t′
S (v ) 00

v∈U∗ ..

(IH)
r∈U

//

Remark: we only consider deterministic or finite and bounded cases,hence the case when there exist arbitrarily many r ′ such thatΘt,t ′
S (u) := Θt,t ′

S (v ) B r ′ will not occur.
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Remarks on this definitionThe sequence Θt,t ′
S (u) begins with the T -reduction (t, t ′), and ensuresthat:(I1) the fork

t

Θt,t′
S (u) 11

u∈U∗ --

can be closed by S:
S

��

t

Θt,t′
S (u) 11

u∈U∗ --(I2) and Θt,t ′
S (u B r ) = Θt,t ′

S (u) B r ′ where r ′ ∈ U∗.
(I2) enables us to extend the operator to infinite reduction sequences:appending a new reduction step to an initial finite sequencekeeps unchanged the reduction sequence correspondingto the initial fragment.
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Echoing

DefinitionLet → be an ARS and S a relation on objects. Then S echoes → if
∀a0 · ∀a′ S a0 · ∃N ∈ N∗ · ∀a0 → · · · → aN ·

∃k ∈ {1, . . . ,N} · ∃b′ S ak · a′
+→ b′

That is, there is a bound N > 0 s.t. for every finite fragment oflength N of any (possibly infinite) sequence of reductions beginningby a0, there is an object ak in this fragment (with k > 1) with anobject b′ s.t. b′ S ak which, itself, derives from a′ in at least one step.
a′

S
��

+
// b′

S

�+

// . . .

a0 // . . . // ak // . . . // aN // . . .
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The insertion lemma

LemmaLet U , T be ARS and S a relation s.t. S prosimulates and echoes U .Then, for any infinite sequence u of U-reductions, beginning by t ,and every T -reduction (t, t ′) s.t. (t ′, t) ∈ S,the sequence Θt,t ′
S (u) is also infinite.

Proof.Let u be an infinite sequence of U-reductions beginning by an object t0. As
S prosimulates U , we can build Θt0,t ′

S (u). This sequence cannot end as,because S echoes U , there necessarily exists a bound to the length of initialfragments of u for which there is at least a reduction step in Θt0,t ′
S (u). Thisprocess of stepping along u and finding corresponding steps in Θt0,t ′
S (u) canbe iterated infinitely as u is not terminating. ∴



A new modular technique Insertability
21/53

Introduction to insertability

Suppose we have T ( U . As we want the sequence Θt,t ′
S (u) to beinfinite provided the sequence u is, two cases are possible:– In the case where a reduction in u comes from U \ T , it shouldbe echoed by at least one U-reduction.– On the other hand, if it is a T -reduction, there could even be nocorresponding U-reduction because inserting a T -reductionat the very beginning of Θt,t ′

S (u) implies that, perhaps,the T -reduction which stood in u is not needed anymoreat the same time in Θt,t ′
S (u).
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Insertability

Then we should be able to “come back” to u through S. It is thusnecessary to ensure that the following diagrams can be closed:
S

t� ||
||

||
||

|

||
||

||
||

|
U+
  

U\T
))

(I+)
S

t�

S

t� }}
}}

}}
}}

}

}}
}}

}}
}}

}
U

∗
  

T
))

(I∗)
S

t�

DefinitionLet U , T be ARS and S a binary relation on the domain of U . Then
T can be inserted in U w.r.t. S if:– T ( U ;– (I+) S B→U\→T ⊆

+→UB S;– (I∗) S B→T ⊆
∗→UB S.
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Insertability and echoing

Lemma (Insertability)Let U , T be ARS and S a binary relation on the domain of U s.t.:– T is finitely branching ;– T can be inserted in U w.r.t. S;– T |= ⇓.Then S prosimulates and echoes U .
Proof.First, T can be inserted in U w.r.t. S, therefore S obviously prosimulates U .Furthermore, by König’s Lemma, the fact that T is finitely branching andterminating implies it is always possible to find, for every initial term, thebound necessary to echoing. ∴
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What if the prosimulation is a reduction?

Now, S may itself be a reduction sequence from terms in Θt,t ′
S (u) tothose in u.As we insert a T -reduction at the beginning of the sequence, wemust be able to come back to the initial sequence by “anti-reducing”the descendants of the subterm which was T -reduced initially.As these descendants may enjoy several occurrences, we consider arelation T ′ such that T−1 ⊆ T ′ and we take T ′∗ for S.
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Prosimulation as a reduction

LemmaLet U , T and T ′ be ARS s.t.:– T ( U ;– T |= ⇓ ;– T−1 ⊆ T ′ ;– T ′ B (U \ T ) ⊆ U∗ B (U \ T ) B U∗ B T ′∗ ;– T ′ B T ⊆ U∗ B T ′.Then, for any infinite sequence u of U-reductions, beginning by t ,and every T -reduction (t, t ′), the sequence Θt,t ′
T ′∗(u) is also infinite.

Proof.Long: see [Chemouil, 2008]. ∴
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Conditional adjournment

Recall the adjournment diagram. A recurringproblem is that the object a the root may not be ina completely satisfactory shape, while not beingtoo far from it.
S

����
��

��
�

R

��

R ** RS

∗
tt

Definition (Conditional Adjournment)Let R and S be ARS and P a predicate on objects.Then S is adjournable w.r.t. R under condition P if
∀a∀b∀c · P(a) ∧ a→S b ∧ b →R c ⇒ ∃d · a→R d

∗→RS c .

Now, how to realise P?
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Realisation

Definition (Realisation)Let T be an ARS, P a predicate on objects and a and object.Then T realises P for a if ∃b · a ∗→T b ∧ P(b).And T realises P if T realises P for any object a.
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Pre-adjusted adjournment

Lemma (Pre-Adjusted Adjournment)Let R , S , and T be ARS, S a relation and P a predicate s.t.:– S is adjournable w.r.t. R under condition P ;– T ⊆ R ;– R |= ⇓;– S |= ⇓;– T realises P– S prosimulates RS ;– S echoes RS .Then RS |= ⇓.
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Terms

(x , ρ) ∈ ΓΓ ` x : ρ (V ) Γ ` ? : 1 (1-I)
Γ ` r : ρ Γ ` s : σΓ ` 〈r , s〉ρ×σ : ρ× σ (×-I) Γ ` r : ρ× σΓ ` (p1ρ×σ r ) : ρ (×-E1)

Γ ` r : ρ× σΓ ` (p2ρ×σ r ) : σ (×-E2)
Γ, x : ρ ` r : σΓ ` (λxρr ) : ρ→ σ

(→-I) Γ ` r : ρ→ σ Γ ` s : ρΓ ` (rs) : σ (→-E)
(c,−→ρ → α) ∈ µ̂ Γ ` −→r : −→ρ [α := µ̂]Γ ` (c−→r ) : µ̂ (µ-I) Γ ` −→t : −−→δ µ̂,σcΓ ` L−→t Mµ̂,σ : µ̂→ σ

(µ-E)
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β-reduction

Definition (β-reduction)

(λxr )s →β→ r [x := s ]
p1〈r , s〉 →β×1 r

p2〈r , s〉 →β×2 s

L−→t M (ci−→r ) →βµ ti
−→r −→∆r where:

∆r :=


L−→t M r if the operator corresponding to r is 0-recursive,
L−→t M ◦ r if the operator corresponding to r is 1-recursive,
∅ otherwise.
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Brouwer’s ordinalsThe strictly-positive approach for inductive types enables to defineinfinitely branching trees with finite depth.A typical example is given by the representation O of Brouwer’sordinals (where N is the inductive type of natural numbers):
O := µα (0 : α, S : α → α, L : (N→ α)→ α)

Here, α is an empty schema, α → α is 0-recursiveand (N→ α)→ α is 1-recursive.The rules for βµ-reduction on Brouwer’s ordinals are then:
Lt0, tS , tLM 0 →βµ t0

Lt0, tS , tLM (S p) →βµ tS p (Lt0, tS , tLM p)
Lt0, tS , tLM (L k) →βµ tL k (Lt0, tS , tLM ◦ k)
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η-reduction

Definition (η-reduction)

r →η→ λxρ · rx if

r : ρ→ σ ,
x /∈ FV(r ),
r is not an abstractionnor in applicative position

r →η× 〈p1r , p2r〉 if {r is of product type,
r is not a pair nor projected.

r →η1 ? if {r : 1,
r 6= ?.
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Properties of βη

Theorem
βη |= ⇓ ∧ βη |= �.Not so easy to prove because η is context-sensitive. This could besolved by orienting the reduction backwards but then new problemsarise that don’t “scale” well.
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Type isomorphisms

Suppose we have an equivalence relation ∼ on terms,an associative composition operator ◦ρ,σ,τ : (σ → τ)→ (ρ→ σ )and a term idρ : ρ→ ρ which is a unit for ◦ (for all types ρ, σ , τ).(◦ and idρ can be defined the obvious way, but not necessarily.)
DefinitionTwo types ρ and σ are isomorphic, written ρ ∼= σ , if there exist twoterms f : ρ→ σ and g : σ → ρ s.t. f ◦ g ∼ idσ and g ◦ f ∼ idρ.Notice that an isomorphism between types might be provable but notcomputable. This is the reason why it is necessary to devise arewriting relation implementing ∼ and prove its convergence.Note also that isomorphisms are of extensional nature, hence wecan’t do without η.
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Faithful copies of inductive types

DefinitionLet there be two types π and π′ and two inductive types φ and φ′ s.t.if π appears in φ, it is only as a parameter or as the full domain ofthe functional argument of a 1-recursive operator.Let there also be a computable isomorphism f : π ∼= π′ : f ′ .Then, φ′ is a faithful copy of φ induced by f and f ′ if the first typeonly differs from the second one by constructor names and by the factthat zero or several occurrences of π in φ are replaced by π′ in φ′.
Obviously, faithful copies form provable isomorphisms. We shall makethem computably isomorphic by adding an adequate reduction (χ).



Applications Copies of inductive types
37/53

Realising faithful copies

Define fc : µα (−→c : −→κ )→ µα (−→c ′ : −→κ′ ), fc′ : µα (−→c ′ : −→κ′ )→ µα (−→c : −→κ )for terms obtained from two faithful copies and terms f : π ∼= π′ : f .
ExampleSuppose we have f : N ∼= P : f ′ and:

φ := µα (c1:α,c2:((N→N)→α)→α,c3:N→α→α,c4:(N→α)→α)
φ′ := µα (c ′

1
:α,c ′

2
:((N→N)→α)→α,c ′

3
:P→α→α,c ′

4
:(P→α)→α)

Then the general definition of fc gives:
fc c1 := c ′

1

fc (c2 k) := c ′
2
k

fc (c3 h t) := c ′
3

(f h) (fc t)
fc (c4 k) := c ′

4
(fc ◦ k ◦ f ′)
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Adding reduction rules

Definition (χ-reduction)

(χ1) fc′ (fc r )→χ r(χ2) fc (fc′ r )→χ r

How to prove convergence of χ? Unfortunately, it does not seempossible to use a simulation or Akama-Di Cosmo’s Lemma.Given a term r , we call maximal abstracted form of r the termwritten dre s.t. dre begins by as many λ-abstractions as the arity of r .
Note r

∗→η→ dre but dre may differ from the η→-normal form of rbecause the strict subterms of dre may still contain η→-redices.
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Problems with adjournment

Adjournment seems adequate to show the termination. Suppose wehave a term L−→t M (fc′ (fc (ci −→rp −→r0 −→r1 ))) and following reductions:
L−→t M (fc′ (fc (ci −→rp −→r0 −→r1 )))→χ L−→t M (ci −→rp −→r0 −→r1 )

→βµ ti
−→
rp
−→
r0
−→
r1
−−−−−→(L−→t Mr0) −−−−−−→(L−→t M ◦ r1)Adjourning χ w.r.t. βη means looking for a term s s.t.

L−→t M (fc′ (fc (ci −→rp −→r0 −→r1 )))→βη s
∗→βηχ ti

−→
rp
−→
r0
−→
r1
−−−−−→(L−→t Mr0) −−−−−−→(L−→t M ◦ r1)Alas the sequence we end up with is rather of the following form:

L−→t M (fc′ (fc (ci −→rp −→r0 −→r1 )))→βµ
∗→βη L−→t M (ci −→rp −→r0 −−→dr1e)

∗→βη ti
−→
rp
−→
r0
−−→
dr1e

−−−−−→(L−→t M r0) −−−−−−−−→(L−→t M ◦ dr1e)
∗→β→ ti

−→
rp
−→
r0
−−→
dr1e

−−−−−→(L−→t M r0) −−−−−−→(L−→t M ◦ r1)



Applications Copies of inductive types
40/53

Towards a solutionLet us use the insertion operator in the case where the relation Sis a reduction relation containing the inverse of η→:
Definition (η→-reduction, η-contraction)

λxρ · rx →η→ r if x /∈ FV(r ),
Lemma
η→ can be inserted βηχ w.r.t. η→.
Proof.We obviously have η→ ( βηχ . We must show →η→ B→η→ ⊆

∗→βηχ B
∗→η→and →η→ B→βη×,1χ ⊆

∗→βηχ B→βη×,1χ B
∗→βηχ B

∗→η→ .Tedious diagrams chasings. ∴
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Termination of βηχ

Lemma
βηχ |= ⇓.
Proof.Define a condition P on terms s.t. 1-recursive arguments be in maximalabstracted form. We have:– η→ ( βη, βη |= ⇓ and χ |= ⇓;– η→ realises P as 1-recursive arguments are not in applicative position;– η→ can be inserted in βηχ w.r.t. η→ and η→ |= ⇓.Hence, η→ prosimulates and echoes βηχ .As η−1→ ⊆ η→, for any pair (t, t ′) ∈ η→, we have (t ′, t) ∈ η→.By pre-adjusted adjournment, we must prove χ can be adjourned w.r.t. βηunder condition P . Tedious diagram chasings. ∴
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Back to college

A permutation is a bijection from a finite set to itself. The carrier of apermutation on a set is made of those elements which aren’t invariant.The set of permutations on [n], with composition as the product, is agroup, called the symmetric group of order n and denoted σn.A cycle on a set E is a permutation s s.t. there is {a1, . . . , an} ⊆ E s.t.
s(ai ) = ai+1 for i < n;
s(an) = a1

s(b) = b for b /∈ {a1, . . . , an}.
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σ-reductionEvery permutation s 6= id can be decomposed uniquely (up to theordering of factors) in a product of disjoint cycles. The composition iscommutative but it’s possible to set up an ordering <, lexicographicalfor instance, on cycles in order to obtain a canonical decomposition.Hence, every map f : [n]→ [n] (n > 2) is equal to a product of mmutually disjoint cycles (m > 2) f1, . . . , fm:
f = f1 ◦ · · · ◦ fm (with f1 < . . . < fm).

Definition (σ-reduction)

f r →σ f1 (. . . (fm r ) . . .)for every permutation f ∈ σn, for all n > 2, where f is decomposedinto m > 2 mutually disjoint cycles {f1, . . . , fm} ⊆ σn.
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Proving termination: getting the idea

Let us call βn-reduction the fragment of βµ applying toterms f : n→ n; we then have: f cni →βn c
n
f (i ) for all f : n→ n.Then, to show termination of βησ-reduction, there is a difficulty:if we try to adjourn σ w.r.t. βη, we get the following diagramfor βµ-reduction:

C
[
f ci

]
σ

wwooooooooooooo
βµ

$$

C
[
f1 (. . . (fm ci ) . . .)]

βµ ((

C
[
cf (i )]

C
[
f1 (. . . (fm−1 cfm(i )) . . .)]βµ

∗
??
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Proving termination: getting the idea (cont.)

This suggests to use pre-adjusted adjournment using as a conditionthe fact that terms must be in βn-normal form, i.e the lemma must beused in full generality (i.e not w.r.t. a reduction).Notice that it would be hard to consider a deterministic reductionrelation β′n containing the inverse of βn. Indeed, the inverse image ofa constructor ci by the relation βn is generally of cardinality strictlygreater than 1. Intuitively, βn is not injective.Nevertheless, after a first observation of the situation, we can seethat the inverse image by βn is finite and that βn-redices are closedterms: therefore, it remains possible to build systematically S bychoosing a term g s.t. g ci →βn cf (i ).This term shall only collapse, be duplicated or be reduced (even afterthe decomposition of g itself) to cf (i ).
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Defining the prosimulation

DefinitionLet f be a permutation in σn. Define a binary relation Sf on termsthis way: given two terms a and a′, tag (with different numbers) everysubterm of a′ of the form cf (i ), for all i , and denote by La′ the list ofthese labelled constructors.Then a′ Sf a if there exists a substitution ζ, mapping a labelledconstructor to a term, s.t.:– a′ζ = a;– and ∀c`f (i ) ∈ La′ , one has c`f (i )ζ ∗→βn cf (i ) (where ` is a label).
Notice that it is not enough to show that βn-reduction can beinserted in βησ w.r.t. Sf ! Indeed, a βn-redex happens to be alsoa σ-redex. Write σ u βn for the set of σ-reductions whose left-handsides are βn-redices, that is of the form f ci (obviously σ u βn ⊆ σ ).
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Echoing

Lemma
Sf echoes βησ .
Proof.We must show that
∀a0 · ∀a′ Sf a0 · ∃N ∈ N∗ · ∀a0 →βησ · · · →βησ aN ·

∃k ∈ {1, . . . ,N} · ∃b′ Sf ak · a′
+→βησ b

′

Let a0 and a′ be s.t. a′ Sf a0, i.e there is a substitution ζ s.t. a′ζ = a0 and,for all c`
f (i ) ∈ La′ , we have c`

f (i )ζ ∗→βn cf (i ).Now, consider all possible reduction sequences beginning by a0 and takenfrom βn ∪ (σ u βn). As this latter relation terminates (easily shown),there exists a bound — write it N0 — to the length of these sequences.Define N := N0 + 1.
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Echoing (cont.)

Proof (cont.).Take an arbitrary sequence a0 →βησ · · · →βησ aN of length N . We must finda k ∈ {1, . . . ,N} s.t. there is a b′ s.t. b′ Sf a1 and a′
+→βησ b

′.– Either a0 →βησ\βn a1: then it is enough to put k = 1 and to apply thesame reduction on a′ thus obtaining b′ s.t. b′ Sf a1. Notice that thevalue of N is not important when such a reduction is applied to a0.This comes from the fact that subterms of a0 in the image of ζare βn-redices and therefore, here, can only collapse or beduplicated (in the general case, they may also enjoy a βn-reduction).The echoing is therefore obviously determined.– Or a0 →βn∪(σuβn ) a1. In that case, we can glance through the sequence
a0 →βn∪(σuβn ) · · · →βησ aN until reaching the first occurrence of areduction different from βn and σ u βn. It necessarily exists as N > N0:its ordering number is the sought k and it is enough to echo it thesame way than in the previous case. ∴
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Termination

Lemma
βησ |= ⇓.
Proof.Define a condition P on terms s.t. these are in βn-normal form. We have:– βnσ ( βη;– βη |= ⇓;– σ |= ⇓ (easy);– βnσ obviously realises P (in fact, βn is enough) ;– Sf prosimulates (easy) and echoes βησ .By the pre-adjusted adjournment, we just need to show that σ isadjournable w.r.t. βη under condition P . Tedious diagram chasings. ∴
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So?You may not believe me, but the proposed technique is:– not so hard to understand;– general enough to be applied in a number of complex cases;– quite abstract.
Still, there’s room for improvement:– a more general and synthetic presentation [Lengrand, 2006];– extending lemmas other than the adjournment one.
Finally, could it be of some use for Ralph’s work?
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