A modular technique for termination proofs in abstract rewriting systems

David CHEMOUIL

ONERA/DTIM Toulouse

2009-06-30, Séminaire Vérification de Toulouse

Motivation

Follow-up to Ralph Matthes' presentation of May 19, 2009. Some aspects of Ralph's presentation:

- Extension of simply-typed λ -calculus with new reduction rules;
- Proof of termination (a.k.a strong normalisation) using a simulation technique;
- Introduction of "garbage" to fit the hypotheses of the technique.

Motivation

Follow-up to Ralph Matthes' presentation of May 19, 2009. Some aspects of Ralph's presentation:

- Extension of simply-typed λ -calculus with new reduction rules;
- Proof of termination (a.k.a strong normalisation) using a simulation technique;
- Introduction of "garbage" to fit the hypotheses of the technique.

This presentation:

- My position: garbage is dirty :-)
- Introduction of a new abstract technique for termination proofs;
- Application to two λ -calculi.

Work during my PhD [Chemouil, 2004] and recently published in [Chemouil, 2008]. However, these results were never presented (in this shape) in a conference until now.

WHAT IS IT ALL ABOUT? Rewriting systems Abstract termination proofs

A NEW MODULAR TECHNIQUE

Infinite reduction sequences The insertion lemma Insertability Prosimulation as a reduction An application to adjournment

APPLICATIONS

A simply-typed λ -calculus with inductive types Copies of inductive types Group symmetries

Conclusion

WHAT IS IT ALL ABOUT?

Deciding equivalence

A general, common, setting:

- "Objects": terms, graphs, λ -terms...
- Identities t = u between objects.

Identities induce an equivalence relation \approx on objects.

However, given two arbitrary objects: can we *decide* whether they are equivalent w.r.t the relation?

Rewriting

```
An approach:
convert the n identities into m \ge n reduction rules t \to u,
such that the equivalence closure of \rightarrow yields precisely \approx.
```

Now, \rightarrow converges if:

termination : every reduction sequence terminates;

confluence : any "fork" can be closed.

Proposition

 \rightarrow converges $\Rightarrow \approx$ is decidable.

Abstract reduction systems

Definition

An abstract reduction system (ARS) is given by a set A of *objects* and a set $\{\rightarrow_R \mid R \in I\}$ of *binary relations* on A.

 \rightarrow_R is sometimes written R. Now some other notation:

$$\begin{array}{lll} \leftarrow_{R} & := & \rightarrow_{R}^{-1} \\ \rightarrow_{R} \rhd \rightarrow_{S} & := & \{(x, z) \mid \exists y \in A \cdot x \rightarrow_{R} y \land y \rightarrow_{S} z\} \\ \stackrel{0}{\rightarrow}_{R} & := & \{(x, x) \in A^{2}\} \\ \stackrel{n+1}{\rightarrow}_{R} & := & \stackrel{n}{\rightarrow}_{R} \rhd \rightarrow_{R} \\ \stackrel{*}{\rightarrow}_{R} & := & \bigcup_{n \geqslant 0} \stackrel{n}{\rightarrow}_{R} \\ \stackrel{+}{\rightarrow}_{R} & := & \bigcup_{n \geqslant 1} \stackrel{n}{\rightarrow}_{R} \\ \rightarrow_{RS} & := & \rightarrow_{R} \cup \rightarrow_{S} \end{array}$$

Relational and diagrammatic notations

Proving properties of ARS will often lead to formulas of the shape:

$$\forall r \cdot r \rightarrow_R r' \wedge r \rightarrow_S r'' \Rightarrow \exists r''' \cdot r' \stackrel{*}{\rightarrow}_S r''' \wedge r'' \stackrel{*}{\rightarrow}_R r'''$$

Their relational representation is often more readable:

$$\leftarrow_R \vartriangleright \to_S \subseteq \overset{*}{\to}_S \vartriangleright \overset{*}{\leftarrow}_R$$

... as is the diagrammatic representation:

Termination

Definition

Given a binary relation \rightarrow_R on A, the set SN of terminating objects is the smallest one such that $\forall r \ (\forall s \cdot r \rightarrow_R s \Rightarrow s \in SN) \Rightarrow r \in SN$. This is *classically* equivalent to saying that, for any object in SN, there is no infinite reduction sequence starting from this object.

Definition

Let *R* be a reduction relation on a set *A*. Then *R* terminates, written $R \models \downarrow$, if all objects in *A* are terminating under *R*.

What is it all about?

Abstract termination proofs

Proving termination

Now, how to show termination of a rewriting system?

Proving termination

Now, how to show termination of a rewriting system?

- Be clever: semantic approaches (e.g. Tait-Girard);

Proving termination

Now, how to show termination of a rewriting system?

- Be clever: semantic approaches (e.g. Tait-Girard);
- Be masochistic: show that the reduction relation is a well-founded ordering by exhibiting a nice measure $A \rightarrow \mathbb{N}$;

Proving termination

Now, how to show termination of a rewriting system?

- Be clever: semantic approaches (e.g. Tait-Girard);
- Be masochistic: show that the reduction relation is a well-founded ordering by exhibiting a nice measure $A \rightarrow \mathbb{N}$;
- Be lazy: compose easily-proven results about subsystems using lemmas on ARS.

Abstract termination proofs

Adjournment

Lemma (Adjournment) Let *R* and *S* be ARS s.t.:

 $- R \models \Downarrow$

$$-S \models \Downarrow$$

- $S ▷ R ⊆ R ▷ (RS)^*$ (adjournment).

Then $RS \models \Downarrow$.

Proof.

Suppose $R \models \Downarrow, S \models \Downarrow$ and $S \triangleright R \subseteq R \triangleright (RS)^*$. Suppose RS doesn't terminate: then there is an infinite sequence of RS-reductions, alternating finite fragments of R- and S-reductions, as $R \models \Downarrow$ and $S \models \Downarrow$. Running along the sequence from the beginning, "lift" an R-reduction every time $S \triangleright R$ is met, building a new infinite RS-sequence. Iterating this process, an infinite R-reduction subsequence is built. Contradiction.

11/53

Abstract termination proofs

Adjournment

Lemma (Adjournment) Let *R* and *S* be ARS s.t.:

 $- R \models \Downarrow$

$$-S \models \Downarrow$$

- $S ▷ R ⊆ R ▷ (RS)^*$ (adjournment).

Then $RS \models \Downarrow$.

Proof.

Suppose $R \models \Downarrow$, $S \models \Downarrow$ and $S \triangleright R \subseteq R \triangleright (RS)^*$. Suppose RS doesn't terminate: then there is an infinite sequence of RS-reductions, alternating finite fragments of R- and S-reductions, as $R \models \Downarrow$ and $S \models \Downarrow$. Running along the sequence from the beginning, "lift" an R-reduction every time $S \triangleright R$ is met, building a new infinite RS-sequence. Iterating this process, an infinite R-reduction subsequence is built. Contradiction.

11/53

Simulation

Definition

Let T and U be two ARS. An application |-| from the carrier of T to that of U is:

- a weak simulation if $r \to_T s \Rightarrow |r| \stackrel{*}{\to}_U |s|$;
- a simulation if $r \to_T s \Rightarrow |r| \stackrel{+}{\to}_U |s|$.

Lemma

Let *T* and *U* be two ARS. If there is a simulation from *T* to *U*, then $U \models \Downarrow \Rightarrow T \models \Downarrow$.

Proof.

Suppose T doesn't terminate: then there is an infinite sequence of T-reductions. Simulating it yields an infinite sequence of U-reductions (as the simulation produces *at least one* U-reduction for any T-reduction). Contradiction.

Simulation

Definition

Let T and U be two ARS. An application |-| from the carrier of T to that of U is:

- a weak simulation if $r \to_T s \Rightarrow |r| \stackrel{*}{\to}_U |s|;$
- a simulation if $r \to_T s \Rightarrow |r| \stackrel{+}{\to}_U |s|$.

Lemma

Let *T* and *U* be two ARS. If there is a simulation from *T* to *U*, then $U \models \Downarrow \Rightarrow T \models \Downarrow$.

Proof.

Suppose T doesn't terminate: then there is an infinite sequence of T-reductions. Simulating it yields an infinite sequence of U-reductions (as the simulation produces *at least one* U-reduction for any T-reduction). Contradiction.

A NEW MODULAR TECHNIQUE

Reductio ad absurdum

Quite a number of termination proofs on ARS rely on *reductio ad absurdum*. The general argument to show the termination of T, given the termination of U, is the following:

- Suppose T doesn't terminate, *i.e* there is an infinite sequence of T-reductions;
- Provide a constructive way to build an infinite sequence of U-reductions out of any sequence of T-reductions;
- Derive a contradiction.

Prosimulation

Definition

Let *U* be an ARS and *S* be a binary relation on the domain of *U*. Then *S* prosimulates *U* if $S \triangleright \rightarrow U \subseteq \stackrel{*}{\rightarrow}_{U} \triangleright S$.

Insertion

Definition

Let U, T be ARS, S a relation, u a finite sequence of U-reductions beginning with an object t and (t, t') a T-reduction, s.t.:

- S prosimulates U;
- and $(t', t) \in \mathcal{S}$.

Define an insertion operator $\Theta_{S}^{t,t'}$ by recursion on *u*:

- If *u* is empty, insert the *T*-reduction: $\Theta_{\mathcal{S}}^{t,t'}(u) := (t, t') \in T$. As $(t', t) \in \mathcal{S}$, we have: $\tau \longrightarrow t'$

Insertion (cont.)

Definition (cont.)

- Otherwise, $u = v \triangleright r$ with $v \in U^*$ and $r \in U$. Then, we have $\Theta_{\mathcal{S}}^{t,t'}(u) := \Theta_{\mathcal{S}}^{t,t'}(v) \triangleright r'$ with:

Remark: we only consider deterministic or finite and bounded cases, hence the case when there exist arbitrarily many r' such that $\Theta_{S}^{t,t'}(u) := \Theta_{S}^{t,t'}(v) \triangleright r'$ will not occur.

Remarks on this definition

The sequence $\Theta_{S}^{t,t'}(u)$ begins with the *T*-reduction (t, t'), and ensures that:

(12) and $\Theta_{\mathcal{S}}^{t,t'}(u \triangleright r) = \Theta_{\mathcal{S}}^{t,t'}(u) \triangleright r'$ where $r' \in U^*$.

(I2) enables us to extend the operator to infinite reduction sequences: appending a new reduction step to an initial finite sequence keeps unchanged the reduction sequence corresponding to the initial fragment.

Echoing

Definition

Let \rightarrow be an ARS and S a relation on objects. Then S echoes \rightarrow if

$$\forall a_0 \cdot \forall a' \ S \ a_0 \cdot \exists N \in \mathbb{N}^* \cdot \forall a_0 \to \dots \to a_N \cdot \\ \exists k \in \{1, \dots, N\} \cdot \exists b' \ S \ a_k \cdot a' \stackrel{+}{\to} b'$$

That is, there is a bound N > 0 s.t. for every finite fragment of length N of any (possibly infinite) sequence of reductions beginning by a_0 , there is an object a_k in this fragment (with $k \ge 1$) with an object b' s.t. $b' S a_k$ which, itself, derives from a' in at least one step.

The insertion lemma

Lemma

Let U, T be ARS and S a relation s.t. S prosimulates and echoes U. Then, for any infinite sequence u of U-reductions, beginning by t, and every T-reduction (t, t') s.t. $(t', t) \in S$, the sequence $\Theta_S^{t,t'}(u)$ is also infinite.

Proof.

Let *u* be an infinite sequence of *U*-reductions beginning by an object t_0 . As S prosimulates *U*, we can build $\Theta_S^{t_0,t'}(u)$. This sequence cannot end as, because S echoes *U*, there necessarily exists a bound to the length of initial fragments of *u* for which there is at least a reduction step in $\Theta_S^{t_0,t'}(u)$. This process of stepping along *u* and finding corresponding steps in $\Theta_S^{t_0,t'}(u)$ can be iterated infinitely as *u* is not terminating.

20/53

Introduction to insertability

Suppose we have $T \subsetneq U$. As we want the sequence $\Theta_{\mathcal{S}}^{t,t'}(u)$ to be infinite provided the sequence u is, two cases are possible:

- In the case where a reduction in *u* comes from $U \setminus T$, it should be echoed by at least one *U*-reduction.
- On the other hand, if it is a *T*-reduction, there could even be no corresponding *U*-reduction because inserting a *T*-reduction at the very beginning of $\Theta_S^{t,t'}(u)$ implies that, perhaps, the *T*-reduction which stood in *u* is not needed anymore at the same time in $\Theta_S^{t,t'}(u)$.

- 21/53

Insertability

Then we should be able to "come back" to u through S. It is thus necessary to ensure that the following diagrams can be closed:

Definition

Let *U*, *T* be ARS and *S* a binary relation on the domain of *U*. Then *T* can be inserted in *U* w.r.t. *S* if:

$$- T \subsetneq U;$$

- (*I*₊) $S \triangleright \rightarrow u \setminus \rightarrow \tau \subseteq \stackrel{+}{\rightarrow} u \triangleright S$

Insertability and echoing

Lemma (Insertability)

Let U, T be ARS and S a binary relation on the domain of U s.t.:

- T is finitely branching ;
- T can be inserted in U w.r.t. S;
- $-T \models \Downarrow$.

Then S prosimulates and echoes U.

Proof.

First, T can be inserted in U w.r.t. S, therefore S obviously prosimulates U. Furthermore, by König's Lemma, the fact that T is finitely branching and terminating implies it is always possible to find, for every initial term, the bound necessary to echoing.

23/53

What if the prosimulation is a reduction?

Now, S may itself be a reduction sequence from terms in $\Theta_{S}^{t,t'}(u)$ to those in u.

As we insert a T-reduction at the beginning of the sequence, we must be able to come back to the initial sequence by "anti-reducing" the descendants of the subterm which was T-reduced initially.

As these descendants may enjoy several occurrences, we consider a relation T' such that $T^{-1} \subseteq T'$ and we take T'^* for S.

Prosimulation as a reduction

Prosimulation as a reduction

Lemma

Let U, T and T' be ARS s.t.:

- $T \subsetneq U;$
- $T \models \Downarrow;$
- $T^{-1} \subseteq T'$;
- $T' \rhd (U \setminus T) \subseteq U^* \rhd (U \setminus T) \rhd U^* \rhd T'^* ;$
- $T' \vartriangleright T \subseteq U^* \vartriangleright T'.$

Then, for any infinite sequence u of U-reductions, beginning by t, and every T-reduction (t, t'), the sequence $\Theta_{T^{**}}^{t,t'}(u)$ is also infinite.

Proof.

Long: see [Chemouil, 2008].

25/53

Conditional adjournment

Recall the adjournment diagram. A recurring problem is that the object a the root may not be in a completely satisfactory shape, while not being too far from it.

Definition (Conditional Adjournment) Let *R* and *S* be ARS and *P* a predicate on objects. Then *S* is adjournable w.r.t. *R* under condition *P* if

 $\forall a \forall b \forall c \cdot P(a) \land a \rightarrow_S b \land b \rightarrow_R c \Rightarrow \exists d \cdot a \rightarrow_R d \xrightarrow{*}_{RS} c .$

Now, how to *realise P*?

An application to adjournment

Realisation

Definition (Realisation)

Let *T* be an ARS, *P* a predicate on objects and *a* and object. Then *T* realises *P* for *a* if $\exists b \cdot a \xrightarrow{*}_T b \land P(b)$. And *T* realises *P* if *T* realises *P* for any object *a*.

Pre-adjusted adjournment

Lemma (Pre-Adjusted Adjournment)

Let R, S, and T be ARS, S a relation and P a predicate s.t.:

- S is adjournable w.r.t. R under condition P;
- $T \subseteq R;$
- $R \models \downarrow;$
- $-S \models \downarrow;$
- T realises P
- S prosimulates RS;
- \mathcal{S} echoes RS.

Then $RS \models \Downarrow$.

28/53

Applications

Applications

A simply-typed λ -calculus with inductive types

Terms

$$\frac{(x,\rho)\in\Gamma}{\Gamma\vdash x:\rho} (V) \qquad \qquad \frac{}{\Gamma\vdash \star:1} (1-I)$$

$$\frac{\Gamma \vdash r : \rho \qquad \Gamma \vdash s : \sigma}{\Gamma \vdash \langle r, s \rangle^{\rho \times \sigma} : \rho \times \sigma} (\times -I) \qquad \qquad \frac{\Gamma \vdash r : \rho \times \sigma}{\Gamma \vdash (\mathfrak{p}_1^{\rho \times \sigma} r) : \rho} (\times -E_1)$$

$$\frac{\Gamma \vdash r : \rho \times \sigma}{\Gamma \vdash (p_2^{\rho \times \sigma} r) : \sigma} (\times -E_2)$$

$$\frac{\Gamma, x: \rho \vdash r: \sigma}{\Gamma \vdash (\lambda x^{\rho} r): \rho \to \sigma} (\to -I) \qquad \qquad \frac{\Gamma \vdash r: \rho \to \sigma \quad \Gamma \vdash s: \rho}{\Gamma \vdash (rs): \sigma} (\to -E)$$

$$\frac{(c, \overrightarrow{\rho} \to \alpha) \in \hat{\mu} \qquad \Gamma \vdash \overrightarrow{r} : \overrightarrow{\rho}[\alpha := \hat{\mu}]}{\Gamma \vdash (c \overrightarrow{r}) : \hat{\mu}} (\mu \text{-I}) \qquad \frac{\Gamma \vdash \overrightarrow{t} : \overrightarrow{\delta_{c}^{\hat{\mu}, \sigma}}}{\Gamma \vdash ((\overrightarrow{t})^{\hat{\mu}, \sigma} : \hat{\mu} \to \sigma} (\mu \text{-E})$$

β -reduction

Definition (β -reduction)

 $\begin{array}{ll} (\lambda xr)s & \rightarrow_{\beta_{\rightarrow}} & r[x := s] \\ p_1 \langle r, s \rangle & \rightarrow_{\beta_{\times 1}} & r \\ p_2 \langle r, s \rangle & \rightarrow_{\beta_{\times 2}} & s \\ (\left(\overrightarrow{t}\right)\right) & (c_i \overrightarrow{r}) & \rightarrow_{\beta_{\mu}} & t_i \overrightarrow{r} \overrightarrow{\Delta_r} & \text{where:} \end{array}$

 $\Delta_r := \begin{cases} (\vec{t}) \ r & \text{if the operator corresponding to } r \text{ is 0-recursive,} \\ (\vec{t}) \circ r & \text{if the operator corresponding to } r \text{ is 1-recursive,} \\ \varnothing & \text{otherwise.} \end{cases}$

31/53

Brouwer's ordinals

The strictly-positive approach for inductive types enables to define infinitely branching trees with finite depth.

A typical example is given by the representation **O** of Brouwer's ordinals (where **N** is the inductive type of natural numbers):

$$\mathbf{O} := \mu \alpha (\mathbf{0} : \alpha, S : \alpha \to \alpha, L : (\mathbf{N} \to \alpha) \to \alpha)$$

Here, α is an empty schema, $\alpha \rightarrow \alpha$ is 0-recursive and $(\mathbf{N} \rightarrow \alpha) \rightarrow \alpha$ is 1-recursive.

The rules for β_{μ} -reduction on Brouwer's ordinals are then:

η -reduction

Definition (η-reduction)

$$\begin{array}{ll} r & \rightarrow_{\eta_{\rightarrow}} & \lambda x^{\rho} \cdot rx & \text{ if } \begin{cases} r : \rho \to \sigma, \\ x \notin \mathsf{FV}(r), \\ r \text{ is not an abstraction} \\ & \text{ nor in applicative position} \end{cases} \\ r & \rightarrow_{\eta_{\times}} & \langle \mathsf{p}_{1}r, \mathsf{p}_{2}r \rangle & \text{ if } \begin{cases} r \text{ is of product type,} \\ r \text{ is not a pair nor projected.} \end{cases} \\ r & \rightarrow_{\eta_{1}} & \star & \text{ if } \begin{cases} r : 1, \\ r \neq \star. \end{cases} \end{array}$$

- 33/53

Applications

Properties of $\beta\eta$

Theorem

$$\beta\eta \models \Downarrow \land \beta\eta \models \diamond.$$

Not so easy to prove because η is context-sensitive. This could be solved by orienting the reduction backwards but then new problems arise that don't "scale" well.

Type isomorphisms

Suppose we have an equivalence relation \sim on terms, an associative composition operator $\circ_{\rho,\sigma,\tau} : (\sigma \to \tau) \to (\rho \to \sigma)$ and a term $\mathrm{id}_{\rho} : \rho \to \rho$ which is a unit for \circ (for all types ρ, σ, τ).

(\circ and id_{ρ} can be defined the obvious way, but not necessarily.)

Definition

Two types ρ and σ are **isomorphic**, written $\rho \cong \sigma$, if there exist two terms $f : \rho \to \sigma$ and $g : \sigma \to \rho$ s.t. $f \circ g \sim id_{\sigma}$ and $g \circ f \sim id_{\rho}$.

Notice that an isomorphism between types might be **provable** but not **computable**. This is the reason why it is necessary to devise a rewriting relation implementing \sim and prove its convergence.

Note also that isomorphisms are of extensional nature, hence we can't do without η .

Faithful copies of inductive types

Definition

Let there be two types π and π' and two inductive types φ and φ' s.t. if π appears in φ , it is only as a parameter or as the full domain of the functional argument of a 1-recursive operator.

Let there also be a *computable* isomorphism $f:\pi \stackrel{\sim}{=} \pi':f'$.

Then, φ' is a faithful copy of φ induced by f and f' if the first type only differs from the second one by constructor names and by the fact that zero or several occurrences of π in φ are replaced by π' in φ' .

Obviously, faithful copies form *provable* isomorphisms. We shall make them *computably* isomorphic by adding an adequate reduction (χ) .

- 37/53

Realising faithful copies

Define fc : $\mu\alpha$ (\overrightarrow{c} : $\overrightarrow{\kappa}$) $\rightarrow \mu\alpha$ ($\overrightarrow{c'}$: $\overrightarrow{\kappa'}$), fc' : $\mu\alpha$ ($\overrightarrow{c'}$: $\overrightarrow{\kappa'}$) $\rightarrow \mu\alpha$ (\overrightarrow{c} : $\overrightarrow{\kappa}$) for terms obtained from two faithful copies and terms f : $\pi \cong \pi'$: f.

Example

Suppose we have $f : \mathbf{N} \cong \mathbf{P} : f'$ and:

$$\varphi := \mu \alpha \ (c_1: \alpha, c_2: ((\mathbf{N} \to \mathbf{N}) \to \alpha) \to \alpha, c_3: \mathbf{N} \to \alpha \to \alpha, c_4: (\mathbf{N} \to \alpha) \to \alpha)$$

$$\varphi' := \mu \alpha \ (c'_1 : \alpha, c'_2 : ((\mathbf{N} \to \mathbf{N}) \to \alpha) \to \alpha, c'_3 : \mathbf{P} \to \alpha \to \alpha, c'_4 : (\mathbf{P} \to \alpha) \to \alpha)$$

Then the general definition of fc gives:

$$\begin{array}{ll} \text{fc } c_1 & := c_1' \\ \text{fc } (c_2 \ k) & := c_2' \ k \\ \text{fc } (c_3 \ h \ t) & := c_3' \ (f \ h) \ (\text{fc } t) \\ \text{fc } (c_4 \ k) & := c_4' \ (\text{fc} \circ k \circ f') \end{array}$$

Copies of inductive types

Adding reduction rules

Definition (χ -reduction)

 $\begin{array}{ll} (\chi_1) & \text{fc}' (\text{fc } r) \rightarrow_{\chi} r \\ (\chi_2) & \text{fc} (\text{fc}' r) \rightarrow_{\chi} r \end{array}$

How to prove convergence of χ ? Unfortunately, it does not seem possible to use a simulation or Akama-Di Cosmo's Lemma.

Given a term r, we call maximal abstracted form of r the term written $\lceil r \rceil$ s.t. $\lceil r \rceil$ begins by as many λ -abstractions as the arity of r. Note $r \xrightarrow{*}_{\eta \rightarrow} \lceil r \rceil$ but $\lceil r \rceil$ may differ from the η_{\rightarrow} -normal form of rbecause the strict subterms of $\lceil r \rceil$ may still contain η_{\rightarrow} -redices.

38/53

Problems with adjournment

Adjournment seems adequate to show the termination. Suppose we have a term (\vec{t}) (fc' (fc $(c_i \vec{r^{\rho}} \vec{r^{0}} \vec{r^{1}}))$) and following reductions:

$$(\vec{t}) (\mathsf{fc}' (\mathsf{fc} (c_i \overrightarrow{r^{\rho}} \overrightarrow{r^{0}} \overrightarrow{r^{1}}))) \rightarrow_{\chi} ((\vec{t}) (c_i \overrightarrow{r^{\rho}} \overrightarrow{r^{0}} \overrightarrow{r^{1}})) \rightarrow_{\beta_{\mu}} t_i \overrightarrow{r^{\rho}} \overrightarrow{r^{0}} \overrightarrow{r^{1}} (((\vec{t}) \overrightarrow{r^{0}}) ((\vec{t}) \circ \overrightarrow{r^{1}}))$$

Adjourning χ w.r.t. $\beta\eta$ means looking for a term *s* s.t.

$$(\vec{t}) (\text{fc}' (\text{fc} (c_i \vec{r^{\rho}} \vec{r^{0}} \vec{r^{1}}))) \rightarrow_{\beta\eta} s \xrightarrow{*}_{\beta\eta\chi} t_i \vec{r^{\rho}} \vec{r^{0}} \vec{r^{1}} (\vec{(\vec{t})} \vec{r^{0}}) (\vec{(\vec{t})} \vec{r^{1}})$$
Alas the sequence we end up with is rather of the following form:
$$(\vec{t}) (\text{fc}' (\text{fc} (c_i \vec{r^{\rho}} \vec{r^{0}} \vec{r^{1}}))) \rightarrow_{\beta\mu} \xrightarrow{*}_{\beta\eta} (\vec{t}) (c_i \vec{r^{\rho}} \vec{r^{0}} \vec{r^{1}})$$

$$\stackrel{*}{\rightarrow}_{\beta\eta} t_{i} \overrightarrow{r^{\rho}} \overrightarrow{r^{0}} \overrightarrow{[r^{1}]} (\overrightarrow{((\overrightarrow{t}) r^{0})} (\overrightarrow{((\overrightarrow{t}) \circ [r^{1}]}) \stackrel{*}{\rightarrow}_{\beta \rightarrow} t_{i} \overrightarrow{r^{\rho}} \overrightarrow{r^{0}} \overrightarrow{[r^{1}]} (\overrightarrow{((\overrightarrow{t}) r^{0})} (\overrightarrow{((\overrightarrow{t}) \circ r^{1})})$$

Towards a solution

Let us use the insertion operator in the case where the relation S is a reduction relation containing the inverse of η_{\rightarrow} :

Definition ($\overline{\eta}_{\rightarrow}$ -reduction, η -contraction)

$$\lambda x^{\rho} \cdot rx \rightarrow_{\overline{\eta}_{\rightarrow}} r \quad \text{if } x \notin FV(r),$$

Lemma

 η_{\rightarrow} can be inserted $\beta \eta \chi$ w.r.t. $\overline{\eta}_{\rightarrow}$.

Proof.

We obviously have $\eta_{\rightarrow} \subsetneq \beta \eta \chi$. We must show $\rightarrow_{\overline{\eta}_{\rightarrow}} \rhd \rightarrow_{\eta_{\rightarrow}} \subseteq \overset{*}{\rightarrow}_{\beta \eta \chi} \rhd \overset{*}{\rightarrow}_{\overline{\eta}_{\rightarrow}}$ and $\rightarrow_{\overline{\eta}_{\rightarrow}} \rhd \rightarrow_{\beta \eta_{\times,1}\chi} \subseteq \overset{*}{\rightarrow}_{\beta \eta \chi} \rhd \rightarrow_{\beta \eta_{\times,1}\chi} \rhd \overset{*}{\rightarrow}_{\beta \eta \chi} \rhd \overset{*}{\rightarrow}_{\overline{\eta}_{\rightarrow}}$. Tedious diagrams chasings.

Termination of $\beta \eta \chi$

Lemma

 $\beta\eta\chi \models \downarrow$.

Proof.

Define a condition P on terms s.t. 1-recursive arguments be in maximal abstracted form. We have:

$$- \eta_{\rightarrow} \subsetneq \beta \eta, \ \beta \eta \models \Downarrow \text{ and } \chi \models \Downarrow;$$

- η_{\rightarrow} realises *P* as 1-recursive arguments are not in applicative position;

- η_{\rightarrow} can be inserted in $\beta \eta \chi$ w.r.t. $\overline{\eta}_{\rightarrow}$ and $\eta_{\rightarrow} \models \Downarrow$. Hence, $\overline{\eta}_{\rightarrow}$ prosimulates and echoes $\beta \eta \chi$.

As $\eta_{\rightarrow}^{-1} \subseteq \overline{\eta}_{\rightarrow}$, for any pair $(t, t') \in \eta_{\rightarrow}$, we have $(t', t) \in \overline{\eta}_{\rightarrow}$. By pre-adjusted adjournment, we must prove χ can be adjourned w.r.t. $\beta \eta$ under condition P. Tedious diagram chasings. 41/53

Back to college

A permutation is a bijection from a finite set to itself. The carrier of a permutation on a set is made of those elements which aren't invariant.

The set of permutations on [n], with composition as the product, is a group, called the symmetric group of order n and denoted σ_n .

A cycle on a set *E* is a permutation *s* s.t. there is $\{a_1, \ldots, a_n\} \subseteq E$ s.t.

$$\begin{aligned} s(a_i) &= a_{i+1} & \text{for } i < n; \\ s(a_n) &= a_1 \\ s(b) &= b & \text{for } b \notin \{a_1, \dots, a_n\}. \end{aligned}$$

σ -reduction

Every permutation $s \neq id$ can be decomposed uniquely (up to the ordering of factors) in a product of disjoint cycles. The composition is commutative but it's possible to set up an ordering <, lexicographical for instance, on cycles in order to obtain a canonical decomposition.

Hence, every map $f : [n] \rightarrow [n]$ $(n \ge 2)$ is equal to a product of m mutually disjoint cycles $(m \ge 2)$ f_1, \ldots, f_m :

$$f = f_1 \circ \cdots \circ f_m$$
 (with $f_1 < \ldots < f_m$).

Definition (σ -reduction)

$$\overline{f}r \to_{\sigma} \overline{f_1} (\dots (\overline{f_m} r) \dots)$$

for every permutation $f \in \sigma_n$, for all $n \ge 2$, where f is decomposed into $m \ge 2$ mutually disjoint cycles $\{f_1, \ldots, f_m\} \subseteq \sigma_n$.

Proving termination: getting the idea

Let us call $\beta_{\overline{n}}$ -reduction the fragment of β_{μ} applying to terms $\overline{f}: \overline{n} \to \overline{n}$; we then have: $\overline{f}c_i^{\overline{n}} \to \beta_{\overline{n}} c_{f(i)}^{\overline{n}}$ for all $\overline{f}: \overline{n} \to \overline{n}$.

Then, to show termination of $\beta\eta\sigma$ -reduction, there is a difficulty: if we try to adjourn σ w.r.t. $\beta\eta$, we get the following diagram for β_{μ} -reduction:

Proving termination: getting the idea (cont.)

This suggests to use pre-adjusted adjournment using as a condition the fact that terms must be in $\beta_{\overline{n}}$ -normal form, *i.e* the lemma must be used in full generality (*i.e* not w.r.t. a reduction).

Notice that it would be hard to consider a deterministic reduction relation $\beta'_{\overline{n}}$ containing the inverse of $\beta_{\overline{n}}$. Indeed, the inverse image of a constructor c_i by the relation $\beta_{\overline{n}}$ is generally of cardinality strictly greater than 1. Intuitively, $\beta_{\overline{n}}$ is not injective.

Nevertheless, after a first observation of the situation, we can see that the inverse image by $\beta_{\overline{n}}$ is finite and that $\beta_{\overline{n}}$ -redices are closed terms: therefore, it remains possible to build systematically S by choosing a term \overline{g} s.t. $\overline{g} c_i \rightarrow_{\beta_{\overline{n}}} c_{f(i)}$.

This term shall only collapse, be duplicated or be reduced (even after the decomposition of \overline{g} itself) to $c_{f(i)}$.

Defining the prosimulation

Definition

Let f be a permutation in σ_n . Define a binary relation S_f on terms this way: given two terms a and a', tag (with different numbers) every subterm of a' of the form $c_{f(i)}$, for all i, and denote by $L_{a'}$ the list of these labelled constructors.

Then $a' S_f a$ if there exists a substitution ζ , mapping a labelled constructor to a term, s.t.:

$$- a'\zeta = a_{i}$$

- and $\forall c^{\ell}_{f(i)} \in L_{a'}$, one has $c^{\ell}_{f(i)} \zeta \xrightarrow{*}_{\beta_{\overline{n}}} c_{f(i)}$ (where ℓ is a label).

Notice that it is not enough to show that $\beta_{\overline{n}}$ -reduction can be inserted in $\beta_{\eta\sigma}$ w.r.t. S_f ! Indeed, a $\beta_{\overline{n}}$ -redex happens to be also a σ -redex. Write $\sigma \sqcap \beta_{\overline{n}}$ for the set of σ -reductions whose left-hand sides are $\beta_{\overline{n}}$ -redices, that is of the form $\overline{f} c_i$ (obviously $\sigma \sqcap \beta_{\overline{n}} \subseteq \sigma$).

Group symmetries

Echoing

Lemma S_f echoes $\beta \eta \sigma$.

Proof.

We must show that

$$\begin{aligned} \forall a_0 \cdot \forall a' \ \mathcal{S}_f \ a_0 \cdot \exists N \in \mathbb{N}^* \cdot \forall a_0 \rightarrow_{\beta\eta\sigma} \cdots \rightarrow_{\beta\eta\sigma} a_N \cdot \\ \exists k \in \{1, \dots, N\} \cdot \exists b' \ \mathcal{S}_f \ a_k \cdot a' \xrightarrow{+}_{\beta\eta\sigma} b' \end{aligned}$$

Let a_0 and a' be s.t. $a' S_f a_0$, *i.e* there is a substitution ζ s.t. $a'\zeta = a_0$ and, for all $c_{f(i)}^{\ell} \in L_{a'}$, we have $c_{f(i)}^{\ell} \zeta \xrightarrow{*} \beta_{\overline{n}} c_{f(i)}$.

Now, consider all possible reduction sequences beginning by a_0 and taken from $\beta_{\overline{n}} \cup (\sigma \sqcap \beta_{\overline{n}})$. As this latter relation terminates (easily shown), there exists a bound — write it N_0 — to the length of these sequences. Define $N := N_0 + 1$.

47/5

Echoing (cont.)

Proof (cont.).

Take an arbitrary sequence $a_0 \rightarrow_{\beta\eta\sigma} \cdots \rightarrow_{\beta\eta\sigma} a_N$ of length N. We must find $a \ k \in \{1, \dots, N\}$ s.t. there is a b' s.t. $b' \ S_f \ a_1$ and $a' \stackrel{+}{\rightarrow}_{\beta\eta\sigma} b'$.

- Either $a_0 \rightarrow_{\beta\eta\sigma\backslash\beta\pi} a_1$: then it is enough to put k = 1 and to apply the same reduction on a' thus obtaining b' s.t. $b' S_f a_1$. Notice that the value of N is not important when such a reduction is applied to a_0 . This comes from the fact that subterms of a_0 in the image of ζ are $\beta_{\overline{n}}$ -redices and therefore, here, can only collapse or be duplicated (in the general case, they may also enjoy a $\beta_{\overline{n}}$ -reduction). The echoing is therefore obviously determined.
- Or $a_0 \rightarrow_{\beta_{\pi} \cup (\sigma \sqcap \beta_{\pi})} a_1$. In that case, we can glance through the sequence $a_0 \rightarrow_{\beta_{\pi} \cup (\sigma \sqcap \beta_{\pi})} \cdots \rightarrow_{\beta_{\eta} \sigma} a_N$ until reaching the first occurrence of a reduction different from β_{π} and $\sigma \sqcap \beta_{\pi}$. It necessarily exists as $N > N_0$: its ordering number is the sought k and it is enough to echo it the same way than in the previous case.

Termination

Lemma $\beta \eta \sigma \models \downarrow$.

Proof.

Define a condition *P* on terms s.t. these are in $\beta_{\overline{n}}$ -normal form. We have:

- $\beta_{\overline{n}} \sigma \subsetneq \beta \eta;$
- $-\beta\eta \models \downarrow;$
- $\sigma \models \Downarrow$ (easy);
- $\beta_{\overline{n}}\sigma$ obviously realises P (in fact, $\beta_{\overline{n}}$ is enough) ;
- S_f prosimulates (easy) and echoes $\beta\eta\sigma$.

By the pre-adjusted adjournment, we just need to show that σ is adjournable w.r.t. $\beta\eta$ under condition *P*. Tedious diagram chasings.

CONCLUSION

So?

You may not believe me, but the proposed technique is:

- not so hard to understand;
- general enough to be applied in a number of complex cases;
- quite abstract.

Still, there's room for improvement:

- a more general and synthetic presentation [Lengrand, 2006];
- extending lemmas other than the adjournment one.

Finally, could it be of some use for Ralph's work?

References

- Chemouil, D. (2004).
 Types inductifs, isomorphismes et récriture extensionnelle.
 Thèse de doctorat, Université Paul Sabatier, Toulouse, France.
- Chemouil, D. (2008). An insertion operator preserving infinite reduction sequences. Mathematical Structures in Computer Science, 18(Special Issue 04):693–728.
- Lengrand, S. (2006). Normalisation & Equivalence en Théorie de la Démonstration & Théorie des Types.
 PhD thesis, Université Denis Diderot - Paris VII; University of St Andrews.