A MODULAR TECHNIQUE FOR TERMINATION PROOFS
IN ABSTRACT REWRITING SYSTEMS

David CHEMOUIL

ONERA/DTIM Toulouse

2009-06-30, Séminaire Vérification de Toulouse

2/53

Motivation

Follow-up to Ralph Matthes’ presentation of May 19, 2009.
Some aspects of Ralph’s presentation:
— Extension of simply-typed A-calculus with new reduction rules;

— Proof of termination (a.k.a strong normalisation)
using a simulation technique;

— Introduction of “garbage” to fit the hypotheses of the technique.

Motivation

Follow-up to Ralph Matthes’ presentation of May 19, 2009.
Some aspects of Ralph’s presentation:

— Extension of simply-typed A-calculus with new reduction rules;

— Proof of termination (a.k.a strong normalisation)
using a simulation technique;

— Introduction of “garbage” to fit the hypotheses of the technique.

This presentation:
— My position: garbage is dirty :-)
— Introduction of a new abstract technique for termination proofs;
— Application to two A-calculi.

Work during my PhD [Chemouil, 2004] and recently published
in [Chemouil, 2008]. However, these results were never presented

(in this shape) in a conference until now.

2/53

WHAT IS IT ALL ABOUT?
Rewriting systems
Abstract termination proofs

A NEW MODULAR TECHNIQUE
Infinite reduction sequences
The insertion lemma
Insertability
Prosimulation as a reduction
An application to adjournment

APPLICATIONS
A simply-typed A-calculus with inductive types
Copies of inductive types
Group symmetries

CoNCLUSION

WHAT IS IT ALL ABOUT?

What is it all about? Rewriting systems

5/53

Deciding equivalence

A general, common, setting:
— "“Objects”: terms, graphs, A-terms...
— ldentities t = u between objects.

Identities induce an equivalence relation =~ on objects.

However, given two arbitrary objects:
can we decide whether they are equivalent w.r.t the relation?

What is it all about? Rewriting systems

6/53

Rewriting

An approach:

convert the n identities into m > n reduction rules t — u,
such that the equivalence closure of — yields precisely =.
Now, — converges if:

termination : every reduction sequence terminates;

confluence : any “fork” can be closed.

Proposition
— converges = =& is decidable.

What is it all about? Rewriting systems

7/53

Abstract reduction systems

Definition
An abstract reduction system (ARS) is given by a set A of objects and
a set {—gr | R €I} of binary relations on A.

— g is sometimes written K. Now some other notation:

-1

“R = —R

—rD>—-s = {(x,z)|Iy €A -x >Ry ANy —>5 2}
0

—R = {(x,x) € A%}

n+1 n

— R = —RD> —R

* n

—R = Un>0 —R

+ n

—R = Un>1 —R

—RS = —>rU-—g

What is it all about? Rewriting systems

8/53

Relational and diagrammatic notations
Proving properties of ARS will often lead to formulas of the shape:
Vrer—sprPArosr’ =3 - Ss e At S5g "
Their relational representation is often more readable:
—RrD>—s C D5 <R

...as is the diagrammatic representation:

&,

S, R

What is it all about? Rewriting systems

9/53

Termination

Definition

Given a binary relation —g on A, the set SN of terminating objects is
the smallest one such that Vr (Vs-r - g s = s € SN) = r € SN.
This is classically equivalent to saying that, for any object in SN,
there is no infinite reduction sequence starting from this object.

Definition
Let R be a reduction relation on a set A. Then R terminates,
written R |= |, if all objects in A are terminating under R.

What is it all about? Abstract termination proofs

10/53

Proving termination

Now, how to show termination of a rewriting system?

What is it all about? Abstract termination proofs

10/53

Proving termination

Now, how to show termination of a rewriting system?

— Be clever: semantic approaches (e.g. Tait-Girard);

What is it all about? Abstract termination proofs

10/53

Proving termination

Now, how to show termination of a rewriting system?
— Be clever: semantic approaches (e.g. Tait-Girard);

— Be masochistic: show that the reduction relation is
a well-founded ordering by exhibiting a nice measure A — N;

What is it all about? Abstract termination proofs
10/53

Proving termination

Now, how to show termination of a rewriting system?
— Be clever: semantic approaches (e.g. Tait-Girard);

— Be masochistic: show that the reduction relation is
a well-founded ordering by exhibiting a nice measure A — N;

— Be lazy: compose easily-proven results about subsystems
using lemmas on ARS.

What is it all about? Abstract termination proofs

11/53

Adjournment

Lemma (Adjournment)
Let R and S be ARS s.t.:

- REL ;//R
- Sk 4

—~ $>R C R (RS)* (adjournment). \\
Then RS [{. A

Proof.

Suppose RE |, SE | and S>> R C R > (RS)*. Suppose RS doesn’t
terminate: then there is an infinite sequence of RS-reductions, alternating
finite fragments of R- and S-reductions, as R |= |} and S |= |J. Running
along the sequence from the beginning, “lift" an R-reduction every time

S > R is met, building a new infinite RS-sequence. Iterating this process,
an infinite R-reduction subsequence is built. Contradiction.

What is it all about? Abstract termination proofs

11/53

Adjournment

Lemma (Adjournment)
Let R and S be ARS s.t.:

- REL ;/”R
- Sk 4

—~ $>R C R (RS)* (adjournment). \\
Then RS [{. A

Proof.

Suppose RE |, SE | and S>> R C R > (RS)*. Suppose RS doesn’t
terminate: then there is an infinite sequence of RS-reductions, alternating
finite fragments of R- and S-reductions, as R |= |} and S |= |J. Running
along the sequence from the beginning, “lift" an R-reduction every time

S > R is met, building a new infinite RS-sequence. Iterating this process,
an infinite R-reduction subsequence is built. Contradiction.

What is it all about? Abstract termination proofs

12/53

Simulation

Definition
Let T and U be two ARS. An application |—| from the carrier of T
to that of U is:

— a weak simulation if r -7 s = |r| -y |s

’

— asimulation if r 7 5= [r| Sy [s].

Lemma
Let T and U be two ARS. If there is a simulation from T to U,
thenUE|] = TEI

Proof.

Suppose T doesn’t terminate: then there is an infinite sequence of
T-reductions. Simulating it yields an infinite sequence of U-reductions

(as the simulation produces at least one U-reduction for any T-reduction).
Contradiction. :

What is it all about? Abstract termination proofs

12/53

Simulation

Definition
Let T and U be two ARS. An application |—| from the carrier of T
to that of U is:

— a weak simulation if r -7 s = |r| -y |s

’

— asimulation if r 7 5= [r| Sy [s].

Lemma
Let T and U be two ARS. If there is a simulation from T to U,
thenUE|] = TEI

Proof.

Suppose T doesn’t terminate: then there is an infinite sequence of
T-reductions. Simulating it yields an infinite sequence of U-reductions

(as the simulation produces at least one U-reduction for any T-reduction).
Contradiction. :

A NEW MODULAR TECHNIQUE

A new modular technique Infinite reduction sequences

14/53

Reductio ad absurdum

Quite a number of termination proofs on ARS rely on reductio ad
absurdum. The general argument to show the termination of T, given
the termination of U, is the following:

— Suppose T doesn’t terminate, i.e there is an infinite sequence of
T-reductions;

— Provide a constructive way to build an infinite sequence of
U-reductions out of any sequence of T-reductions;

— Derive a contradiction.

A new modular technique Infinite reduction sequences

15/53

Prosimulation

Definition
Let U be an ARS and S be a binary relation on the domain of U.
Then S prosimulates U if S >—y C Su> S.

U*
>ZZ
8 is
B T —

A new modular technique The insertion lemma

16/53

Insertion

Definition
Let U, T be ARS, S a relation, v a finite sequence of U-reductions
beginning with an object t and (¢, t') a T-reduction, s.t.:

— S prosimulates U;

—and (¢, t) € S.

. . . t,t .
Define an insertion operator ©¢" by recursion on u:

— If u is empty, insert the T-reduction: @‘tg’t,(u) =(t,t)eT.

As (t',t) € S, we have: / t

t s

[

3
t

A new modular technique The insertion lemma

17/53
Insertion (cont.)
Definition (cont.)

- Othgrwlse, u=vpr with v € U* and r € U. Then, we have
05" (u) := 05" (v) > r’ with:

% ************************* >
(IH) s s
VEX} 4)\/
rel

Remark: we only consider deterministic or finite and bounded cases,
hence the case when there exist arbitrarily many r’ such that

@gt,(u) = egt,(v) > r” will not occur.

A new modular technique The insertion lemma

18/53

Remarks on this definition

The sequence @gt/(u) begins with the T-reduction (¢, t'), and ensures
that:

(1) the fork % can be closed by S: %

t t S

M R

(12) and @;’t,(u >r) = @;’t,(u) > r’ where r' € U*.

(12) enables us to extend the operator to infinite reduction sequences:
appending a new reduction step to an initial finite sequence

keeps unchanged the reduction sequence corresponding

to the initial fragment.

A new modular technique The insertion lemma

19/53

Echoing

Definition
Let — be an ARS and S a relation on objects. Then S echoes — if

Jke{l,...,N} I Sax-a 5

That is, there is a bound N > 0 s.t. for every finite fragment of
length N of any (possibly infinite) sequence of reductions beginning
by ag, there is an object aj in this fragment (with k > 1) with an
object b’ s.t. b' S ag which, itself, derives from &’ in at least one step.

+
a/ coaooagaEaEaR) b/ —_ 3 ..

s
S\H/ ?:;:
el

ao ak aN

A new modular technique The insertion lemma

20/53

The insertion lemma

Lemma

Let U, T be ARS and S a relation s.t. S prosimulates and echoes U.
Then, for any infinite sequence u of U-reductions, beginning by ¢,
and every T-reduction (¢, t') s.t. (t/,t) €S,

the sequence thl(u) is also infinite.

Proof.

Let u be an infinite sequence of U-reductions beginning by an object ty. As
S prosimulates U, we can build Og"'t (u). This sequence cannot end as,
because S echoes U, there necessarily exists a bound to the length of initial

fragments of u for which there is at least a reduction step in @g”t/(u). This

process of stepping along u and finding corresponding steps in G)fg"’t/(u) can

be iterated infinitely as u is not terminating.

A new modular technique Insertability
21/53

Introduction to insertability

Suppose we have T C U. As we want the sequence @gt,(u) to be
infinite provided the sequence u is, two cases are possible:
— In the case where a reduction in u comes from U\ T, it should
be echoed by at least one U-reduction.
— On the other hand, if it is a T-reduction, there could even be no
corresponding U-reduction because inserting a T-reduction
at the very beginning of th (uv) implies that, perhaps,
the T-reduction which stood in u is not needed anymore

at the same time in th (u).

A new modular technique Insertability

22/53

Insertability

Then we should be able to “come back” to v through S. It is thus
necessary to ensure that the following diagrams can be closed:

[N
U\\T\ i = T\ B ns
Definition

Let U, T be ARS and S a binary relation on the domain of U. Then
T can be inserted in U w.r.t. S if:

-TCU;
— () S>=u\=T C DU S
- (k) Sp—->1C i’U|> S.

A new modular technique Insertability
23/53

Insertability and echoing

Lemma (Insertability)

Let U, T be ARS and S a binary relation on the domain of U s.t.:
— T is finitely branching ;
— T can be inserted in U w.rt. S;
- TEI

Then S prosimulates and echoes U.

Proof.

First, T can be inserted in U w.r.t. S, therefore S obviously prosimulates U.
Furthermore, by Kénig's Lemma, the fact that T is finitely branching and
terminating implies it is always possible to find, for every initial term, the
bound necessary to echoing.

A new modular technique Prosimulation as a reduction

24/53

What if the prosimulation is a reduction?

Now, S may itself be a reduction sequence from terms in @fg’t (u) to
those in u.

As we insert a T-reduction at the beginning of the sequence, we
must be able to come back to the initial sequence by “anti-reducing”
the descendants of the subterm which was T-reduced initially.

As these descendants may enjoy several occurrences, we consider a
relation 7’ such that T~1 C T’ and we take T’* for S.

A new modular technique Prosimulation as a reduction

25/53

Prosimulation as a reduction

Lemma
Let U, T and T’ be ARS s.t.:

- TCU;

-TEY;

-TlCT;
T'>WU\NT)CU>U\T)>UD>T™,;
-T'>TCUDB>T.

Then, for any infinite sequence u of U-reductions, beginning by ¢,

and every T-reduction (¢, t’), the sequence GtT’i(u) is also infinite.

Proof.
Long: see [Chemouil, 2008].

A new modular technique An application to adjournment

26/53

Conditional adjournment

Recall the adjournment diagram. A recurring

problem is that the object a the root may not be in %) g
a completely satisfactory shape, while not being "'J
too far from it.

\ »
R s

Definition (Conditional Adjournment)

Let R and S be ARS and P a predicate on objects.
Then S is adjournable w.r.t. R under condition P if

VaVbVc-P(a)Aa—s bAb—ogc=3d-a—rd Sgsc .

Now, how to realise P?

A new modular technique An application to adjournment

27/53

Realisation

Definition (Realisation)

Let T be an ARS, P a predicate on objects and a and object.
Then T realises P for aif 3b-a =71 b A P(b).
And T realises P if T realises P for any object a.

A new modular technique An application to adjournment
28/53

Pre-adjusted adjournment

Lemma (Pre-Adjusted Adjournment)
Let R, S, and T be ARS, S a relation and P a predicate s.t.:

S is adjournable w.r.t. R under condition P;

- T CR;
- REU
-SEU

T realises P

S prosimulates RS;
— S echoes RS.
Then RS = |

APPLICATIONS

Applications A simply-typed A-calculus with inductive types

ELEE]

Terms
p) el
%(V) 7(1_”
MEx:p MEx:1
Fr:p Fl—s:a() Fr:pxo R
X= e ———— el (D
FE(rs)*?:pxa [E(pP*r): p !
Fr:pxo
W(X -E»)
x:pkr:o Fr:p—>o Es:p
—- —-
rl—()\x"r):p—uf() ["F(rs):o ()
T
P —a)ep T+F7:Pla:=}l M7 800
=\ . A (u-1) =0 . A (u-E)
FE(cr):p FE(E) ph-o

Applications A simply-typed A-calculus with inductive types

EVEE]

B-reduction

Definition (B-reduction)

(Axr)s —g, [fx:=74]

prrs) gy T

pafris) —p, S

(]_t>|) (¢;T) —g, t;?E where:

(]_t)l) r if the operator corresponding to r is O-recursive,
_t>|) or if the operator corresponding to r is 1-recursive,

1%} otherwise.

Applications A simply-typed A-calculus with inductive types

EPIEE]

Brouwer's ordinals

The strictly-positive approach for inductive types enables to define
infinitely branching trees with finite depth.

A typical example is given by the representation O of Brouwer's
ordinals (where N is the inductive type of natural numbers):

O=pa(0:a,S:a—a,L:(N—a)—a)

Here, a is an empty schema, @ — a is O-recursive
and (N — a) — a is 1-recursive.

The rules for B,-reduction on Brouwer's ordinals are then:
(to, ts, tz) O —p, to

(to. ts. tr) (S p) —p, ts p((to. ts, tr) p)
(to, ts, tr) (L k) —p, tr k ((to, ts, tr) o k)

Applications A simply-typed A-calculus with inductive types
33/53

n-reduction

Definition (n-reduction)

r:p—o,

x & FV(r),

ro—n, AxP-rx if _é r))
r is not an abstraction

nor in applicative position

r is of product type,

ro—n (pir.p2r) i) :
r is not a pair nor projected.

01,
roo—g x if {r
r# *.

Applications A simply-typed A-calculus with inductive types

34/53

Properties of Bn

Theorem
BnlE=UABno.
Not so easy to prove because n is context-sensitive. This could be

solved by orienting the reduction backwards but then new problems
arise that don't “scale” well.

Applications Copies of inductive types

35/53

Type isomorphisms

Suppose we have an equivalence relation ~ on terms,
an associative composition operator o, ¢ : (0 — 7) = (p — 0)
and a term id, : p — p which is a unit for o (for all types p, o, 7).

(o and id, can be defined the obvious way, but not necessarily.)
Definition

Two types p and o are isomorphic, written p = g, if there exist two
terms f :p - oandg:0 - pst. fog~id, and gof ~id,.
Notice that an isomorphism between types might be provable but not

computable. This is the reason why it is necessary to devise a
rewriting relation implementing ~ and prove its convergence.

Note also that isomorphisms are of extensional nature, hence we
can’t do without n.

Applications Copies of inductive types
36/53

Faithful copies of inductive types

Definition

Let there be two types 7 and &” and two inductive types ¢ and ¢’ s.t.
if T appears in ¢, it is only as a parameter or as the full domain of
the functional argument of a 1-recursive operator.

Let there also be a computable isomorphism f : 7 = 7’ : f .
Then, ¢’ is a faithful copy of ¢ induced by f and f’ if the first type

only differs from the second one by constructor names and by the fact
that zero or several occurrences of 7 in ¢ are replaced by 7" in ¢'.

Obviously, faithful copies form provable isomorphisms. We shall make
them computably isomorphic by adding an adequate reduction (x).

Applications Copies of inductive types

37/53

Realising faithful copies

- — - —
Define fc: pa (T : K) — pa(c : k'), f :pa(c’ : k') = pa(<C

EER
for terms obtained from two faithful copies and terms f : 7 = 7’ : f.)
Example
Suppose we have f : N = P : f’ and:

@:=pa (c1:a,6:(N-N)—a)—a,c3:N—a—a,cs:(N—a)—a)

¢ = pa (¢j:a,ch:(N—N)—a)—a,c4:P—a—a,c,:(P—a)—a)

Then the general definition of fc gives:

fc a =Xe
fc (k) =cbk

fc(c3 ht) :=c3 (f h) (fc t)
fc (ca k) =c¢; (fcokof’)

Applications Copies of inductive types

ELIEE]

Adding reduction rules
Definition (x-reduction)

(x1) fc' (fcr) — i
(x2) fc (fc' r) — T

How to prove convergence of x? Unfortunately, it does not seem

possible to use a simulation or Akama-Di Cosmo’s Lemma.

Given a term r, we call maximal abstracted form of r the term
written [r] s.t. [r] begins by as many A-abstractions as the arity of r.

Note r =, [r] but [r] may differ from the n_,-normal form of r
because the strict subterms of [r] may still contain n_,-redices.

Applications Copies of inductive types

39/53

Problems with adjournment

Adjournment seems adequate to show the termination. Suppose we
— = =
have a term (]_t)l) (fc" (fc (ci rP r° r'))) and following reductions:

(2D (< (fc (ci P 78 F)) =, (F) (@ 7 2 A

— —

i
— o i PO ((]_t)l)ro) ((]_t)

)or)

Adjourning x w.r.t. Bn means looking for a term s s.t.
- —

[Z) (' (Fc (i P 10 F))) gy s S & 78 10 A ((E)P) (£ o)

Alas the sequence we end up with is rather of the follow'mg form:

() (S (fc (c; B 5 F)) =g, 5pn (T) (7 7 [F1])
Sgn ti 8 O [P ((F)) (F) o [F])
St 78 0 [((F)) ((B) o)

Applications Copies of inductive types

40/53

Towards a solution

Let us use the insertion operator in the case where the relation S
is a reduction relation containing the inverse of n_:

Definition (7_,-reduction, n-contraction)
AXPrx =g r if x & FV(r),

Lemma
n— can be inserted Bny w.rt. n_,.

Proof.

We obviously have n_, C Bny. We must show —; > —, C Sp, > 5

* * *
and —q > =gy, 1 © =B > = Bnax B B > =0
Tedious diagrams chasings.

Applications Copies of inductive types

41/53

Termination of Bny

Lemma

Bnx E U
Proof.

Define a condition P on terms s.t. 1-recursive arguments be in maximal
abstracted form. We have:

- n-SBn Bl and x = U
— n-, realises P as 1-recursive arguments are not in applicative position;

— 1, can be inserted in By w.rt. 7, and n-, = |.
Hence, 77_, prosimulates and echoes Bny.

As n=! C i, for any pair (t, t') € n_,, we have (t’,t) €7_,.
By pre-adjusted adjournment, we must prove y can be adjourned w.r.t. Bn
under condition P. Tedious diagram chasings.

Applications Group symmetries

42/53

Back to college

A permutation is a bijection from a finite set to itself. The carrier of a
permutation on a set is made of those elements which aren’t invariant.

The set of permutations on [n], with composition as the product, is a
group, called the symmetric group of order n and denoted o,.

A cycle on a set E is a permutation s s.t. there is {a1,...,a,} C E s.t.
s(a;)) = ajy1 fori<nm
s(a)) = a1
s(b)y = b for b ¢ {a1,...,an}.

Applications Group symmetries
43/53

o-reduction

Every permutation s # id can be decomposed uniquely (up to the
ordering of factors) in a product of disjoint cycles. The composition is
commutative but it's possible to set up an ordering <, lexicographical
for instance, on cycles in order to obtain a canonical decomposition.

Hence, every map f : [n] — [n] (n > 2) is equal to a product of m
mutually disjoint cycles (m > 2) f1, ., 1%

f=fo --ofy, (withfi<...<fp).
Definition (o-reduction)

frogh (..(far)..))

for every permutation f € a,, for all n > 2, where f is decomposed
into m > 2 mutually disjoint cycles {f,..., fm} C 0op.

Applications Group symmetries

44/53

Proving termination: getting the idea

Let us call Bs-reduction the fragment of Bp applying to
terms f: 1 — 7; we then have: fc —g, cf(j for all f:a -7

Then, to show termination of Bno-reduction, there is a difficulty:
if we try to adjourn o w.r.t. Bn, we get the following diagram
for B,-reduction:

C [?c,-]

Applications Group symmetries
45/53

Proving termination: getting the idea (cont.)

This suggests to use pre-adjusted adjournment using as a condition
the fact that terms must be in Bsz-normal form, i.e the lemma must be
used in full generality (i.e not w.r.t. a reduction).

Notice that it would be hard to consider a deterministic reduction
relation B containing the inverse of By. Indeed, the inverse image of
a constructor ¢; by the relation B is generally of cardinality strictly
greater than 1. Intuitively, Bs is not injective.

Nevertheless, after a first observation of the situation, we can see
that the inverse image by By is finite and that Bs-redices are closed
terms: therefore, it remains possible to build systematically S by
choosing a term g s.t. gci —g, cf(j)-

This term shall only collapse, be duplicated or be reduced (even after
the decomposition of g itself) to cf;).

Applications Group symmetries
46/53

Defining the prosimulation

Definition

Let f be a permutation in g,. Define a binary relation S¢ on terms
this way: given two terms a and &', tag (with different numbers) every
subterm of a’ of the form cr(iy, for all i, and denote by Ly the list of
these labelled constructors.

Then a’ S¢ a if there exists a substitution ¢, mapping a labelled
constructor to a term, s.t.:

- a(=a;
— and ch(,-) € Ly, one has cf(,-)C i>,gﬁ cr(i) (where £ is a label).

Notice that it is not enough to show that Bz-reduction can be
inserted in Bno w.rt. S¢! Indeed, a Bz-redex happens to be also

a o-redex. Write o N B5 for the set of g-reductions whose left-hand
sides are Bp-redices, that is of the form f ¢; (obviously o M Br C o).

Applications Group symmetries

47/53

Echoing

Lemma
Sy echoes Bno.

Proof.
We must show that

Vao - Va' Sf ap-IN € N*-Vag —gps -+ —pno an-
Tk e {1,...,N}- 35 S a2 gy bf

Let ag and &’ be s.t. 8’ S¢ ag, i.e there is a substitution ¢ s.t. a'C = ag and,
for all ¢f;) € Ly, we have cf; ¢ Sp, cr(i).

Now, consider all possible reduction sequences beginning by ap and taken
from Bz U (o M Br). As this latter relation terminates (easily shown),

there exists a bound — write it Ny — to the length of these sequences.
Define N := Np + 1.

Applications Group symmetries

48/53

Echoing (cont.)

Proof (cont.).
Take an arbitrary sequence ag —gps - - - —pgyo an of length N. We must find
ake{l,... N}st thereisa b st b Sf ay and & g, b

— Either ag — g0\, a1: then it is enough to put k = 1 and to apply the
same reduction on a’ thus obtaining b’ s.t. b’ S¢ a1. Notice that the
value of N is not important when such a reduction is applied to ag.
This comes from the fact that subterms of ap in the image of ¢
are Ba-redices and therefore, here, can only collapse or be
duplicated (in the general case, they may also enjoy a Bz-reduction).
The echoing is therefore obviously determined.

— Or ag —p,u(ong,) a1- In that case, we can glance through the sequence
ag —g,u(oMBa) * - —Bno an until reaching the first occurrence of a
reduction different from Bz and o 1M Bx. It necessarily exists as N > Np:
its ordering number is the sought k and it is enough to echo it the
same way than in the previous case.

Applications Group symmetries

49/53

Termination

Lemma
Bno = |
Proof.
Define a condition P on terms s.t. these are in Bz—normal form. We have:
- Bso C Bn;
- BnE
- 0| (easy);
— Bro obviously realises P (in fact, B is enough) ;
— Sr prosimulates (easy) and echoes Bna.

By the pre-adjusted adjournment, we just need to show that o is
adjournable w.r.t. Bn under condition P. Tedious diagram chasings.

CoNCLUSION

Conclusion

So?

51/53

You may not believe me, but the proposed technique is:
— not so hard to understand;

— general enough to be applied in a number of complex cases;
— quite abstract.

Still, there’s room for improvement:

— a more general and synthetic presentation [Lengrand, 2006];

— extending lemmas other than the adjournment one.

Finally, could it be of some use for Ralph’s work?

REFERENCES

» Chemouil, D. (2004).
Types inductifs, isomorphismes et récriture extensionnelle.
Theése de doctorat, Université Paul Sabatier, Toulouse, France.

» Chemouil, D. (2008).
An insertion operator preserving infinite reduction sequences.

Mathematical Structures in Computer Science, 18(Special Issue
04):693-728.

» Lengrand, S. (2006).
Normalisation & Equivalence en Théorie de la Démonstration & Théorie
des Types.
PhD thesis, Université Denis Diderot - Paris VII; University of St
Andrews.

	What is it all about?
	Rewriting systems
	Abstract termination proofs

	A new modular technique
	Infinite reduction sequences
	The insertion lemma
	Insertability
	Prosimulation as a reduction
	An application to adjournment

	Applications
	A simply-typed -calculus with inductive types
	Copies of inductive types
	Group symmetries

	Conclusion
	Appendix
	References

