Accelerated Model-Checking for Real-Time Systems

Frédéric Herbreteau
LaBRI, Université de Bordeaux - CNRS, FRANCE

Séminaire DTIM Onera, Toulouse
31st may 2010
Plan

Model-Checking Real-Time Systems
 Linear Hybrid Automata
 Symbolic Semantics: Linear Hybrid Relations

Accelerated Model-Checking
 Symbolic Model-Checking
 Meta-Transitions

Periodic Acceleration
 Transitive Closure for Periodic LHR
 Dealing with Ultimate Periodicity

Conclusions and Future Work
Plan

Model-Checking Real-Time Systems
 Linear Hybrid Automata
 Symbolic Semantics: Linear Hybrid Relations

Accelerated Model-Checking
 Symbolic Model-Checking
 Meta-Transitions

Periodic Acceleration
 Transitive Closure for Periodic LHR
 Dealing with Ultimate Periodicity

Conclusions and Future Work
Plan

Model-Checking Real-Time Systems
 Linear Hybrid Automata
 Symbolic Semantics: Linear Hybrid Relations

Accelerated Model-Checking
 Symbolic Model-Checking
 Meta-Transitions

Periodic Acceleration
 Transitive Closure for Periodic LHR
 Dealing with Ultimate Periodicity

Conclusions and Future Work
Goal

Automatically check safety requirements for real-time systems.

Example

The "Leaking Gas Burner" [CHR91]:

"Whenever the gas burner is used for at least 60s. and provided that it leaks for at most 1s. every 30s., then the accumulated leaking time does not exceed 1/20th of total elapsed time"

Model-checking based on the computation of exact loop invariants
Modeling the "Leaking Gas Burner"

"Whenever the gas burner is used for at least 60s. and provided that it leaks for at most 1s. every 30s., then the accumulated leaking time does not exceed 1/20th of total elapsed time"
Semantics overview

\[\begin{align*}
0 & \leq 1 \\
\neg \quad 0 & \leq 1 \\
\mathbf{L} & \quad \mathbf{\neg L} \\
\dot{x}_1 & = 1 \quad \dot{x}_1 = 1 \\
\dot{x}_2 & = 1 \quad \dot{x}_2 = 1 \\
\dot{x}_3 & = 1 \quad \dot{x}_3 = 0 \\
x_1 & \leq 1 \quad x_1 \geq 30 \\
x_1 & \rightarrow 0 \quad x_1 \rightarrow 0 \\
x_1 = 0 \quad x_1 = 0 \\
\land x_2 = 0 \quad \land x_2 = 0 \\
\land x_3 = 0 \quad \land x_3 = 0
\end{align*} \]
Semantics overview

\[x_1 = 0.3 \]

\[x_1 \leq 1 \implies x_1 := 0 \]

\[x_1 \geq 30 \implies x_1 := 0 \]
Semantics overview

\[
\begin{align*}
\dot{x}_1 &= 1 \\
\dot{x}_2 &= 1 \\
\dot{x}_3 &= 1 \\
x_1 &\leq 1 \\
x_1 &= 0 \land x_2 = 0 \land x_3 = 0
\end{align*}
\]

\[
\begin{align*}
\dot{x}_1 &= 1 \\
\dot{x}_2 &= 1 \\
\dot{x}_3 &= 0 \\
x_1 &\geq 30 \rightarrow x_1 := 0
\end{align*}
\]
Semantics overview

\[\begin{align*}
\dot{x}_1 &= 1 \\
\dot{x}_2 &= 1 \\
\dot{x}_3 &= 1 \\
x_1 &\leq 1 \\
x_1 &= 0 \\
\wedge x_2 &= 0 \\
\wedge x_3 &= 0
\end{align*} \]
Semantics overview

\[
\begin{align*}
\dot{x}_1 &= 1 \\
\dot{x}_2 &= 1 \\
\dot{x}_3 &= 1 \\
x_1 &\leq 1 \\
x_1 &= 0 \\
\land x_2 &= 0 \\
\land x_3 &= 0
\end{align*}
\]

Graph:
- **L**:
 - \(\dot{x}_1 = 1\)
 - \(\dot{x}_2 = 1\)
 - \(\dot{x}_3 = 1\)
 - \(x_1 \leq 1\)
 - \(x_1 = 0\)
 - \(\land x_2 = 0\)
 - \(\land x_3 = 0\)
- **\neg L**:
 - \(\dot{x}_1 = 1\)
 - \(\dot{x}_2 = 1\)
 - \(\dot{x}_3 = 0\)
 - \(x_1 \geq 30\)
 - \(x_1 = 0\)

Conditions:
- \(x_1 := 0\) when \(x_1 \geq 30\)
- \(x_1 := 0\) when \(x_1 \leq 1\)
Semantics overview

\[x_1 := 0 \]

\[x_1 = 0 \land x_2 = 0 \land x_3 = 0 \]

\[\dot{x}_1 = 1 \]
\[\dot{x}_2 = 1 \]
\[\dot{x}_3 = 1 \]
\[x_1 \leq 1 \]

\[x_1 \geq 30 \rightarrow x_1 := 0 \]

\[\neg L \]
\[\dot{x}_1 = 1 \]
\[\dot{x}_2 = 1 \]
\[\dot{x}_3 = 0 \]

\[x_1 = 0.7 \]
Semantics overview

$x_1 := 0$

$x_1 = 0 \land x_2 = 0 \land x_3 = 0$

L

$\dot{x}_1 = 1$

$\dot{x}_2 = 1$

$\dot{x}_3 = 1$

$x_1 \leq 1 \rightarrow x_1 := 0$

$\neg L$

$\dot{x}_1 = 1$

$\dot{x}_2 = 1$

$\dot{x}_3 = 0$

$x_1 \geq 30 \rightarrow x_1 := 0$
Semantics overview

\[x_1 \leq 1 \quad \rightarrow \quad x_1 := 0 \]

\[x_1 \geq 30 \quad \rightarrow \quad x_1 := 0 \]
Semantics overview

\[\begin{align*}
\dot{x}_1 &= 1 \\
\dot{x}_2 &= 1 \\
\dot{x}_3 &= 1 \\
x_1 \leq 1 &\rightarrow x_1 := 0 \\
x_1 \geq 30 &\rightarrow x_1 := 0
\end{align*}\]
Semantics overview
Semantics overview

\[x_1 := 0 \Rightarrow x_1 := 0 \]

\[L \]

\[\dot{x}_1 = 1 \]
\[\dot{x}_2 = 1 \]
\[\dot{x}_3 = 1 \]
\[x_1 \leq 1 \]
\[x_1 \geq 30 \]

\[x_1 := 0 \]

\[\neg L \]

\[\dot{x}_1 = 1 \]
\[\dot{x}_2 = 1 \]
\[\dot{x}_3 = 0 \]

\[x_1 := 0 \]
Semantics overview

\[
\begin{align*}
\dot{x}_1 &= 1, \\
\dot{x}_2 &= 1, \\
\dot{x}_3 &= 1, \\
x_1 &\leq 1 \\
x_1 &= 0 \\
\wedge x_2 &= 0 \\
\wedge x_3 &= 0
\end{align*}
\]

\[\neg L\]

\[
\begin{align*}
\dot{x}_1 &= 1, \\
\dot{x}_2 &= 1, \\
\dot{x}_3 &= 0, \\
x_1 &\geq 30 \\
x_1 &= 0
\end{align*}
\]
Checking safety properties

- **Algorithm:**
 - Compute the **fixpoint** of \rightarrow from $Init$
 - Check if $Fixpoint \subseteq Invariant$ (or $Fixpoint \cap Bad = \emptyset$)

- **Problem:** *infinite* and *uncountable* state-space
Plan

Model-Checking Real-Time Systems
- Linear Hybrid Automata
- Symbolic Semantics: Linear Hybrid Relations

Accelerated Model-Checking
- Symbolic Model-Checking
- Meta-Transitions

Periodic Acceleration
- Transitive Closure for Periodic LHR
- Dealing with Ultimate Periodicity

Conclusions and Future Work
Symbolic semantics: transition

\[
\begin{align*}
(x_1 \geq 30) \land (x'_1 = 0 \land x'_2 = x_2 \land x'_3 = x_3) \land (x'_1 \leq 1)
\end{align*}
\]

- For a transition: \(P_e.x \leq q_e \rightarrow x' = A_e.x + b_e \land P_{l'} . x' \leq q_{l'} \)

\[
\begin{pmatrix}
 P_e & 0 \\
 -A_e & I_n \\
 A_e & -I_n \\
 0 & P_{l'}
\end{pmatrix}

.
\begin{pmatrix}
 x \\
 x'
\end{pmatrix}

\leq
\begin{pmatrix}
 q_e \\
 b_e \\
 -b_e \\
 q_{l'}
\end{pmatrix}

- Sound and complete: \(P.(v \ v') \leq q \iff (l, v) \rightarrow (l', v') \)
Symbolic semantics: time elapsing

\[\exists t \in \mathbb{R}_{\geq 0} \text{ s.t.} \]
\[x'_1 = x_1 + t \wedge x'_2 = x_2 + t \wedge x'_3 = x_3 + t \wedge x'_1 \leq 1 \]

- For a state: \(\exists t \in \mathbb{R}_{\geq 0}, \ P'_l.(x' - x) \leq q'_l.t \wedge P_l.x \leq q_l \)

\[
\begin{pmatrix}
-P'_l & P'_l & -q'_l \\
0 & P_l & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
x \\
x' \\
t
\end{pmatrix}
\leq
\begin{pmatrix}
0 \\
q_l \\
0
\end{pmatrix}
\]

Projection onto \((x \ x')\) yields a polyhedron \(P.(x \ x') \leq q\)

- Sound and complete: \(P.(v \ v') \leq q \text{ iff } (l, v) \rightarrow (l, v')\)
LHR Systems

- System of real-valued counters with discrete evolutions defined by LHR $\theta(x, x')$

\[
\begin{align*}
 x'_1 &\leq 1 \\
 &\land x'_1 - x_1 = x'_2 - x_2 \\
 &\land x'_1 - x_1 = x'_3 - x_3 \\
 &\land x'_1 \geq x_1 \\
\end{align*}
\]

- Goal: check safety properties of LHR systems
Plan

Model-Checking Real-Time Systems
 Linear Hybrid Automata
 Symbolic Semantics: Linear Hybrid Relations

Accelerated Model-Checking
 Symbolic Model-Checking
 Meta-Transitions

Periodic Acceleration
 Transitive Closure for Periodic LHR
 Dealing with Ultimate Periodicity

Conclusions and Future Work
Plan

Model-Checking Real-Time Systems
 Linear Hybrid Automata
 Symbolic Semantics: Linear Hybrid Relations

Accelerated Model-Checking
 Symbolic Model-Checking
 Meta-Transitions

Periodic Acceleration
 Transitive Closure for Periodic LHR
 Dealing with Ultimate Periodicity

Conclusions and Future Work
Effective symbolic state-space computation

- **Symbolic state**: polyhedron $P_s.x \leq q_s$
- **Symbolic transition**: polyhedron $P_t.(x \ x') \leq q_t$
- **Intersection + projection** onto $x' + \text{renaming}$ yields new state $P'_s.x \leq q'_s$.
State-space computation for the LGB

Successive symbolic states in L:

1. \(x_1 = 0 \land x_2 = 0 \land x_3 = 0 \)
State-space computation for the LGB

Successive symbolic states in L:

1. \(x_1 = 0 \land x_2 = 0 \land x_3 = 0 \)

2. \(x_1 = 0 \land x_3 \leq 1 \land x_2 - x_3 \geq 30 \land x_3 \geq 0 \)

The algorithm does not reach a fixpoint!
State-space computation for the LGB

Successive symbolic states in L:

1. $x_1 = 0 \land x_2 = 0 \land x_3 = 0$
2. $x_1 = 0 \land x_3 \leq 1 \land x_2 - x_3 \geq 30 \land x_3 \geq 0$
3. $x_1 = 0 \land x_3 \leq 2 \land x_2 - x_3 \geq 60 \land x_3 \geq 0$

The algorithm does not reach a fixpoint!
State-space computation for the LGB

Successive symbolic states in L:

1. \(x_1 = 0 \land x_2 = 0 \land x_3 = 0 \)
2. \(x_1 = 0 \land x_3 \leq 1 \land x_2 - x_3 \geq 30 \land x_3 \geq 0 \)
3. \(x_1 = 0 \land x_3 \leq 2 \land x_2 - x_3 \geq 60 \land x_3 \geq 0 \)
4. \(x_1 = 0 \land x_3 \leq 3 \land x_2 - x_3 \geq 90 \land x_3 \geq 0 \)
State-space computation for the LGB

Successive symbolic states in L:

1. \(x_1 = 0 \land x_2 = 0 \land x_3 = 0\)
2. \(x_1 = 0 \land x_3 \leq 1 \land x_2 - x_3 \geq 30 \land x_3 \geq 0\)
3. \(x_1 = 0 \land x_3 \leq 2 \land x_2 - x_3 \geq 60 \land x_3 \geq 0\)
4. \(x_1 = 0 \land x_3 \leq 3 \land x_2 - x_3 \geq 90 \land x_3 \geq 0\)

... The algorithm does not reach a fixpoint!
Termination ensured by widening [CC77,CH78]

Capture an (over-approximated) **invariant** of the loop

"The intuition is clear: when a constraint is translated or rotated, it can do infinitely many times, so it is removed" [CH78,HPR94,AHH94]

Conclusion: \((x_2 \geq 60 \Rightarrow 20x_3 \leq x_2)\) holds!
Plan

Model-Checking Real-Time Systems
 Linear Hybrid Automata
 Symbolic Semantics: Linear Hybrid Relations

Accelerated Model-Checking
 Symbolic Model-Checking
 Meta-Transitions

Periodic Acceleration
 Transitive Closure for Periodic LHR
 Dealing with Ultimate Periodicity

Conclusions and Future Work
Exact loop invariant for the LGB

\begin{align*}
x_1' &\leq 1 \\
\land x_1' - x_1 &= x_2' - x_2 \\
\land x_1' - x_1 &= x_3' - x_3 \\
\land x_1' &\geq x_1
\end{align*}

Symbolic state in L after k iterations of the cycle:

$$(x_1 = 0) \land (0 \leq x_3) \land (x_3 \leq k + 1) \land (x_2 - x_3 \geq 30(k + 1))$$

State-space computation does not terminate because it has to compute the set:

$$\{(x_1 = 0) \land (0 \leq x_3) \land (x_3 \leq k+1) \land (x_2 - x_3 \geq 30(k+1)) \mid k \in \mathbb{N}\}$$
Acceleration

Idea: Add a **meta-transition** that captures the loop invariant

\[
\begin{align*}
x_1 &\leq 1 \land x_1' \leq 1 \\
\land x_1' - x_1 &\ = x_2' - x_2 \\
\land x_1' - x_1 &\ = x_3' - x_3 \\
\land x_1' &\geq x_1 \\
x_1' - x_1 &\ = x_2' - x_2 \\
\land x_3' &\ = x_3 \land x_1' \geq x_1 \\
\end{align*}
\]

Problems:

- the loop invariant is **not a polyhedron** → \(\text{FO}(\mathbb{R}, \mathbb{Z}, +, \leq) \)
- how do we **compute** the loop invariant? → **periodic** on \(k \)
Quick overview of $\text{FO}(\mathbb{R}, \mathbb{Z}, +, \leq)$

"Every set of discrete values defined in $\text{FO}(\mathbb{R}, \mathbb{Z}, +, \leq)$ is ultimately periodic" [Wei99]
Real Vector Automata [BBR97, BRW98, BJW01]

- Real numbers encoded as **infinite words** over \(\{0, 1, \bullet\} \):

 \[3.5 \text{ encoded as } 0^+11 \bullet 1(0)^\omega \text{ or } 0^+11 \bullet 0(1)^\omega \]

- Every set definable in \(\text{FO}(\mathbb{R}, \mathbb{Z}, +, \leq) \) is represented by a **Weak Deterministic Büchi Automaton**

\[3x - 6y = 4 \]

- Well-known **efficient** algorithms for \(\cap, \cup, \exists \) and **canonical** representation
Plan

Model-Checking Real-Time Systems
 Linear Hybrid Automata
 Symbolic Semantics: Linear Hybrid Relations

Accelerated Model-Checking
 Symbolic Model-Checking
 Meta-Transitions

Periodic Acceleration
 Transitive Closure for Periodic LHR
 Dealing with Ultimate Periodicity

Conclusions and Future Work
Plan

Model-Checking Real-Time Systems
 Linear Hybrid Automata
 Symbolic Semantics: Linear Hybrid Relations

Accelerated Model-Checking
 Symbolic Model-Checking
 Meta-Transitions

Periodic Acceleration
 Transitive Closure for Periodic LHR
 Dealing with Ultimate Periodicity

Conclusions and Future Work
Iterability of LHR

Definition
A LHR \(\theta(x, x') \) is **iterable** if its reflexive and transitive closure is definable in \(\text{FO}(\mathbb{R}, \mathbb{Z}, +, \leq) \)

- Some LHR are **not iterable**: \(x_3 = \sum_{j=1}^{k} j = \frac{k(k-1)}{2} \) at iteration \(k \)

\[
\begin{align*}
x_1 &= 0 \\
\land x_2 &= 0 \\
\land x_3 &= 0 \\
\end{align*}
\]

\[
\begin{align*}
x_1 &= 0 \\
x_2 &= 1 \\
x_3 &= 1 \\
x_2 &\leq x_1 \\
\end{align*}
\]

\[
(x_1 - x_2 = x_3' - x_3) \land (x_2 \leq x_1) \land (x_1' = x_1 + 1) \land (x_2' = 0)
\]

- **Deciding** if a given LHR is **iterable** is an open problem
Trajectory of extremal rays
Trajectory of extremal rays
Trajectory of extremal rays

\[\begin{align*}
 x_2 &= 30 + 30 \\
 x_3 &= 1 + \frac{1}{2} \\
 \end{align*} \]
Trajectory of extremal rays
Trajectory of extremal rays

- **Periodic translations** of the faces of $P. (x x') \leq q$

\[
\begin{align*}
\text{(} x'_1 &= 0 \\
\land (x_1 + x'_3 - x_3 &\leq (k + 1)) \\
\land (x_3 &\leq x'_3) \\
\land ((x'_2 - x_2) - (x'_3 - x_3) &\geq 30(k + 1))
\end{align*}
\]
Periodic LHR

Definition
A LHR $\theta(x, x')$ is periodic if it has the following form:

$$\begin{pmatrix} P_0 & 0 \\ -P_1 & P_1 \\ 0 & P_2 \end{pmatrix} \cdot \begin{pmatrix} x \\ x' \end{pmatrix} \leq \begin{pmatrix} q_0 \\ q_1 \\ q_2 \end{pmatrix}$$

Intuition: $(-P_1 \; P_1).(x \; x') \leq q_1$ is a translation

$$\begin{pmatrix} -P_1 & P_1 & 0 \\ 0 & -P_1 & P_1 \end{pmatrix} \cdot \begin{pmatrix} x \\ x' \\ x'' \end{pmatrix} \leq \begin{pmatrix} q_1 \\ q_1 \end{pmatrix} \implies (-P_1 \; P_1).(x \; x'') \leq 2q_1$$
Periodic acceleration of LHR

Theorem
The reflexive and transitive closure θ^* of any periodic LHR θ is definable in $\text{FO}(\mathbb{R}, \mathbb{Z}, +, \leq)$

Proof.

- For any $k \geq 2$ and V in $\text{FO}(\mathbb{R}, \mathbb{Z}, +, \leq)$
 \[
 \theta^k(V) = \theta(\theta_{k-2}^1(\theta(V) \cap C) \cap C)
 \]

- θ_{k}^1 defined by $P_1.(x \ x') \leq kq_1$

- $C = \{v \mid P_0.v \leq q_0 \text{ and } P_2.v \leq q_2\}$

- θ^* obtained by integer quantification over k
The cycle in the "Leaking Gas Burner" is not a periodic LHR:

\[(x_1' = 0) \land (x_3' - x_3 \leq 1 - x_1) \land (x_3' - x_3 \leq x_2' - x_2 - 30) \land (x_3 \leq x_3')\]

\[
\begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & -1 & 1 \\
0 & 0 & 1 & 0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_1' \\
x_2' \\
x_3'
\end{pmatrix}
\leq
\begin{pmatrix}
0 \\
0 \\
1 \\
-30 \\
0
\end{pmatrix}
\]

The initial value of \(x_1\) constrains the time spent in the leaking location.
Plan

Model-Checking Real-Time Systems
 Linear Hybrid Automata
 Symbolic Semantics: Linear Hybrid Relations

Accelerated Model-Checking
 Symbolic Model-Checking
 Meta-Transitions

Periodic Acceleration
 Transitive Closure for Periodic LHR
 Dealing with Ultimate Periodicity

Conclusions and Future Work
Focusing on the iterative subspace

- Since $x'_1 = 0$ each iteration, except the first one, takes place in the plane (x_2, x_3)

$$(x'_1 = 0) \land (x'_3 - x_3 \leq 1 - x_1) \land (x'_3 - x_3 \leq x'_2 - x_2 - 30) \land (x_3 \leq x'_3)$$

- By restriction to the plane (x_2, x_3), one gets a periodic LHR:

$$
\begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 & 0
\end{pmatrix} \cdot
\begin{pmatrix}
 x_1 \\
x_2 \\
x_3 \\
x'_1 \\
x'_2 \\
x'_3
\end{pmatrix} \leq
\begin{pmatrix}
0 \\
0 \\
1 \\
-30 \\
0
\end{pmatrix}$$
Subspace reduction

Theorem
Any LHR $\theta(x, x')$ with dimension n such that $\dim(\theta(\mathbb{R}^n)) = p < n$ is reducible to a LHR θ' with dimension p

Proof.

- Compute a change of variables $x = U.y + u_0$
 - u_0 is any point in $\theta(\mathbb{R}^n)$
 - U is a basis for $\theta(\mathbb{R}^n) - u_0$
- Obtain $\theta'(y, y')$ by adding $x = U.y + u_0$ and $x' = U.y' + u_0$ to $\theta(x, x')$, and by projecting out x and x'
- $\forall k > 0$ and $\forall V$ in FO($\mathbb{R}, \mathbb{Z}, +, \leq$), we have $\theta^k(V) = U.(\theta')^{k-1}(V') + u_0$ where $V' \subseteq \mathbb{R}^m$ is the solution of $\theta(V) = U.V' + u_0$

A similar result holds when $\dim(\theta^{-1}(\mathbb{R}^n)) < n$
Ultimately periodic LHR

- This LHR is **not periodic** and subspace reduction does not apply $\theta : (x'_1 + x'_2 = x_1 + x_2 + 1) \land (x'_1 - x'_2 = x_1 + x_2)$

- However, it is **ultimately periodic**

- Indeed: $\theta^2 : (x'_1 = x_1 + x_2 + 3/2) \land (x'_2 = 1/2)$
Ultimately periodic LHR

- This LHR is not periodic and subspace reduction does not apply \(\theta : (x'_1 + x'_2 = x_1 + x_2 + 1) \land (x'_1 - x'_2 = x_1 + x_2) \)

- However, it is ultimately periodic

\[
\begin{align*}
\theta^2 : & (x'_1 = x_1 + x_2 + 3/2) \land (x'_2 = 1/2)
\end{align*}
\]
Ultimately periodic LHR

- This LHR is \textbf{not periodic} and subspace reduction does not apply $\theta : (x'_1 + x'_2 = x_1 + x_2 + 1) \land (x'_1 - x'_2 = x_1 + x_2)$

- However, it is \textbf{ultimately periodic}

\begin{figure}[h]
\centering
\begin{tikzpicture}
\draw[very thin, gray] (-2, -2) grid (7, 7);
\fill[red] (0,0) circle (2pt) node[below left] {$(0,0)$};
\fill[red] (1,1) circle (2pt) node[above right] {$(1,1)$};
\fill[blue] (1,-1) circle (2pt);
\fill[blue] (7,-2) circle (2pt) node[below right] {$(7,-2)$};
\end{tikzpicture}
\end{figure}

- Indeed: $\theta^2 : (x'_1 = x_1 + x_2 + 3/2) \land (x'_2 = 1/2)$
Ultimately periodic LHR

- This LHR is **not periodic** and subspace reduction does not apply
 \[\theta : (x_1' + x_2' = x_1 + x_2 + 1) \land (x_1' - x_2' = x_1 + x_2) \]

- However, it is **ultimately periodic**

\[
\begin{align*}
(x_1', x_2') & = (0, 0), (1, 1), (\pi, 3), (5, -2)
\end{align*}
\]

- Indeed: \(\theta^2 : (x_1' = x_1 + x_2 + 3/2) \land (x_2' = 1/2) \)
Dimensions preserved by iteration

- Iterations of θ only preserves the value of $x_1 + x_2$, not the individual values of x_1 and x_2

$$
\theta : (x_1' + x_2' = x_1 + x_2 + 1) \land (x_1 + x_2 \leq x_1' - x_2')
$$

- Using the change of variables $y = x_1 + x_2$, we obtain a periodic LHR:

$$
\begin{pmatrix}
-1 & 1 \\
1 & -1
\end{pmatrix}
\begin{pmatrix}
y \\
y'
\end{pmatrix}
\leq
\begin{pmatrix}
1 \\
-1
\end{pmatrix}
\quad y' = y + 1
$$

- This change of variables is detected and obtained from the rank of P

$$
\begin{pmatrix}
-1 & -1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & 1 & -1 & 1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_1' \\
x_2'
\end{pmatrix}
\leq
\begin{pmatrix}
1 \\
-1 \\
0
\end{pmatrix}
$$
Rank reduction

Theorem
Any LHR θ with dimension n defined by $(P \ P')(x \ x') \leq q$ and s.t. $\text{rank}(P) = p < n$ is reducible to a LHR θ' with dimension p

Proof.

- Compute a change of variables $y = U.x$ from the linearly independent rows in P
- Obtain $\theta'(y, y')$ by adding $y = U.x$ and $y' = U.x'$ to $\theta(x, x')$, and then by projecting out x and x'
- $\forall k > 0$ and $\forall V$ in FO($\mathbb{R}, \mathbb{Z}, +, \leq$), we have $\theta^k(V) = \theta''((\theta')^{k-1}(U.S))$ where $\theta'' \subseteq \mathbb{R}^p \times \mathbb{R}^n$ is defined by $P'.x' + P''.y \leq q$ where $P = P''.U$.

A similar result holds when $\text{rank}(P_{x'}) < n$
Rotations and permutations

- The following LHR is **not periodic** and **irreducible**:

$$\begin{align*}
x'_1 &= x_1 + x_2 \\
x'_2 &= -x_1
\end{align*}$$

\[
\begin{pmatrix}
-1 & -1 & 1 & 0 \\
1 & 1 & -1 & 0 \\
1 & 0 & 0 & 1 \\
-1 & 0 & 0 & -1 \\
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x'_1 \\
x'_2 \\
\end{pmatrix}
\leq
\begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
\end{pmatrix}
\]

- However, its trajectory is periodic and it has **period 6**
Finding the permutation of variables

\[(x_1) \rightarrow (x_1 + x_2) \rightarrow (x_2) \rightarrow (-x_1) \rightarrow (-x_1 - x_2) \rightarrow (-x_2) \rightarrow (x_1) \rightarrow (x_1 + x_2) \rightarrow (x_2)\]

- The constraints in \(\theta^k(x, x')\) are **linear combinations** of the constraints in \(\theta(x, x')\).

- \(\theta^k(x, x')\) is periodic, i.e. \(P_k = -P'_k\), if there exists a **linear combination** \(A \in \mathbb{Z}^{n \times n}\) of the constraints in \(\theta(x, x')\) s.t. both:
 - \(A.P = -P'\) (where \(\theta(x, x') \equiv (P \ P').(x \ x') \leq q\))
 - and \(A^k = I\) for some integer \(k > 0\)

\[
\begin{pmatrix}
0 & -1 \\
1 & 1 \\
\end{pmatrix} \cdot \begin{pmatrix}
-1 & -1 \\
1 & 0 \\
\end{pmatrix} = \begin{pmatrix}
-1 & 0 \\
0 & -1 \\
\end{pmatrix} \text{ and } A^6 = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix}
\]
Plan

Model-Checking Real-Time Systems
 Linear Hybrid Automata
 Symbolic Semantics: Linear Hybrid Relations

Accelerated Model-Checking
 Symbolic Model-Checking
 Meta-Transitions

Periodic Acceleration
 Transitive Closure for Periodic LHR
 Dealing with Ultimate Periodicity

Conclusions and Future Work
Summary of the method

- Meta-transitions capture **infinite periodic loop iterations**
- **No guarantee of termination** of the state-space computation
Completeness results

- Reachability is **undecidable** for Linear Hybrid Automata

- **Complete** method for **Timed Automata**:
 - Every loop is **reducible** to a **periodic LHR** [CJ98,BIL06,BH06]
 - Timed automata are **flat** [CJ99]

- State-space computation does not terminate in presence of **nested loops**
Hybrid Acceleration Toolkit (HAT)

- **Prototype tool** built on top of **LASH** and Polylib

- Currently implements:
 - a LHR manipulation engine
 - **Periodic acceleration**
 - **Subspace, Rank and Static reductions**

- Takes **both the model and the meta-transitions** as an input, and computes its state-space

- **Automatically** handles **reduction and acceleration** of meta-transitions
Analysing the "Leaking Gas Burner" with HAT

HAT - Hybrid Acceleration Toolkit v0.1

State space computation.....
 mem usage: 351488, max mem usage: 1757134, time: 2.000000
 loc[0] size: 39
 loc[1] size: 0

 mem usage: 378832, max mem usage: 1951048, time: 2.000000
 loc[0] size: 442
 loc[1] size: 39

 mem usage: 408940, max mem usage: 12214286, time: 6.000000
 loc[0] size: 559
 loc[1] size: 469

 mem usage: 426264, max mem usage: 12214286, time: 11.000000
 loc[0] size: 559
 loc[1] size: 834

 mem usage: 412380, max mem usage: 13711777, time: 14.000000
 loc[0] size: 559
 loc[1] size: 684

Fixpoint reached.....17.000000

Property checking.....
 Checking: invariant z>=60 -> 20y<=z
 loc[0]: ok
 loc[1]: ok

Finished.....
 mem usage: 0, max mem usage: 14518513, time: 17.000000
Perspectives

- Rotation reduction for **non square LHR**

- **Completeness** results for other **decidable subclasses of LHA** (Rectangular Initialized Hybrid Automata)

- Loop invariants for **nested loops**, i.e. acceleration of **parametrized** LHR
 - may lead to **non linear** systems

- Model-checking **temporal logics** instead of reachability properties only
 - loop acceleration integrates well in SCC or nested-DFS algorithms (LTL)

- **Heuristics** for the choice of **meta-transitions**
Related works

- Programs with **FIFO queues** [Boigelot&Godefroid’96,’97, Abdulla&Annichini&Bouajjani’99]

- Programs with **integer counters** [Boigelot&Wolper’94,’95,’98,’00, Finkel&Leroux’00,’02, Bardin&Finkel&Leroux’04]

- Programs with **real counters** [Boigelot&Bonne&Rassart’97, Comon&Jurski’98,’99, Boigelot&Herbreteau&Jodogne’03, Boigelot&Herbreteau’06, Bozga&Iosif&Lakhnech’06, Bozga&Girlea&Iosif’09]

- **Combination** of datatypes [Annichini&Asarin&Bouajjani’00, Annachini&Bouajjani&Sighireanu’01, Bardin&Finkel’04]
TaPaS tool [Leroux&Point’09]

- **GENEPI**: generic API to the Presburger arithmetic
- **Armoise/Alambic**: programmation with Presburger arithmetic
- **FAST**: symbolic model-checker for systems with integer counters

http://altarica.labri.fr/forge/projects/altarica/wiki/TaPAS